Пять загадок квантовой механики. Загадки квантовой физики Рис.5. Базовый вариант отложенного выбора

Определение 1

Квантовая физика занимается изучением квантово-механических и квантово-полевых систем. Ее основные законы рассматриваются в квантовой механике и теории поля.

В квантовой физике существует много загадок и парадоксов. Самыми известными из них являются следующие:

  • принцип неопределенности Гейзенберга;
  • корпускулярно-волновой дуализм;
  • кот Шредингера.

Загадка принципа неопределенности Гейзенберга

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы. В этом заключается загадка принципа неопределенности Гейзенберга. Соотношения неопределенностей представляют теоретический предел точности одновременных измерений двух некоммутирующих друг с другом наблюдаемых. Они будут справедливы в отношении идеальных измерений фон Неймана и неидеальных.

Согласно данному принципу, у частицы невозможно одновременно точно измерить скорость (импульс) и положение. Принцип неопределенности может применяться и в случае, когда не будет реализована ни одна из двух крайних ситуаций:

  • полностью определенный импульс и неопределенная пространственная координата;
  • полностью неопределенный импульс и определенная координата.

Замечание 1

Соотношение неопределенностей не ограничивает точность однократного измерения для любой величины. В случае, если оператор коммутирует в разные моменты времени сам с собой, не будет ограничена и точность многократного (непрерывного) измерения одной величины.

Соотношение неопределенностей для свободной частицы, например, не является препятствием для точного измерения ее импульса, но при этом не позволяет точно измерить ее координату (данное ограничение называют стандартным квантовым пределом). В квантовой механике соотношение неопределенностей в математическом смысле представляет прямое следствие свойства преобразования Фурье.

Существует количественно точная аналогия между свойствами сигналов и волн и соотношениями неопределенности Гейзенберга.

Рассмотрим для примера переменный во времени сигнал – звуковую волну. Чтобы точно определить частоту, необходимо наблюдать за сигналом какое-то время, теряя, таким образом, точность его определения. Иными словами, звук не может быть точно зафиксирован по времени, (подобно очень короткому импульсу) с одновременным получением значения частоты (как при чистой синусоиде).

Положение во времени и частота волны считаются математически полностью аналогичными координате частицы и ее квантово-механическому импульсу:

$p_x=\bar{h}k_x$

Импульс в квантовой механике и будет пространственной частотой вдоль соответствующей координаты. При наблюдении макроскопических объектов в повседневной жизни мы обычно не наблюдаем квантовую неопределенность, поскольку значение $\bar{h}$ достаточно мало, что делает эффекты следствия соотношений неопределенности не улавливаемыми для измерительных приборов или органов чувств.

Загадка корпускулярно-волнового дуализма

Замечание 2

Корпускулярно-волновой дуализм (квантово-волновой) является загадкой природы, состоящей в способности материальных микроскопических объектов в одних условиях проявлять свойства классических волн, а в других - классических частиц.

Типичными примерами объектов, проявляющих двойственность корпускулярно-волнового поведения, считаются свет и электроны. Данный принцип считается справедливым и в отношении более крупных объектов, но чем более массивен объект, тем в меньшей степени будут проявляться его волновые свойства (за исключением волн на поверхности жидкости).

Идея квантово-волнового дуализма была задействована в разработке квантовой механики с целью интерпретации наблюдаемых в микромире явлений с позиции классических концепций. Квантовые объекты в действительности не относятся к классическим волнам или частицам. Свойства, как первых, так и вторых они проявляют исключительно в зависимости от условий проводимых над ними экспериментов. Корпускулярно-волновой дуализм может быть объясним только в формате квантовой механики, классическая физика его объяснить не может.

Свое количественное выражение принцип квантового дуализма получил в идее волны де Бройля: для любого объекта, одновременно проявляющего корпускулярные и волновые свойства, наблюдается связь импульса $p$, энергии $E$ (свойственных этому объекту как частице) с его волновыми параметрами: $k$ (вектором волны) и ее длиной $\lambda$, частотой $v$

Такую связь задают соотношения:

$E=\bar{h}\omega=hv$

Где $\bar{h}$ - редуцированная постоянная Планка;

$h=2\pi\bar{h}$ - обычная постоянная Планка.

Волны де Бройля ставятся в соответствие абсолютно любому движущемуся объекту микромира. В качестве такой волны свет и массивные частицы подвергаются явлениям дифракции и интерференции.

Чем массивнее будет частица, тем меньше окажется длина волны де Бройля, а зарегистрировать ее волновые свойства будет намного сложнее. При взаимодействии с окружением объект поведет себя:

  • подобно частице, если длина его волны будет много меньше характерных размеров в его окружении;
  • подобно волне (если намного больше);
  • промежуточный вариант может быть описан только в формате полноценной квантовой теории.

Загадка Шредингера

Интерес ученых представляет загадка мысленного эксперимента кота Шредингера. Его предложил австрийский физик Э. Шредингер, один из основателей квантовой механики. Данным экспериментом Шредингер хотел продемонстрировать неполноту квантовой механики при переходе к макроскопическим системам от субатомных.

По данному эксперименту, воображаемый кот помещается в черный непрозрачный ящик и начинает балансировать между жизнью и смертью из-за угрозы распада ядра с ядовитым веществом.

Согласно принципам квантовой механики, если над ядром наблюдение не производится, его можно описать смешением (суперпозицией) двух состояний: распавшегося и не распавшегося ядра. Таким образом, сидящий в ящике кот считается и живым, и мертвым одновременно.

При открытии ящика экспериментатор сможет наблюдать только какое-нибудь одно состояние: ядро распалось и убило кота или он остался жив из-за не распавшегося ядра.

В своем эксперименте Шредингер задавался вопросом: когда система перестает существовать как результат смешения двух состояний и выбирает какое-то одно? Целью эксперимента считалось продемонстрировать, что квантовая механика не может считаться полной без определенных правил, указывающих условия возникновения коллапса волновой функции. Кот или остается живым или становится мертвым, но в любом случае, перестает быть смешением и того и другого (не существует состояния, сочетающего в себе смерть и жизнь одновременно).

Пример с котом будет аналогичным для атомного ядра, которое обязательно должно быть распавшимся или не распавшимся. В крупных комплексных системах, которые состоят из миллиардного числа атомов, декогеренция осуществляется практически мгновенно. Кот по этой причине не может одновременно быть и живым, и мертвым на определенном, поддающемся измерению, отрезке времени. Процесс декогеренции будет важной составляющей данного мысленного эксперимента.

Есть темы, на которые писать — одно удовольствие. Сто тысяч авторов до тебя уже написали про ЭТО, сто тысяч про ЭТО напишут после, а всё равно найдётся читатель, который прочтёт ЭТО в первый раз. В данном случае речь пойдёт о квантовой механике. Подождите, не уходите на другой портал, пожалуйста! Не переживайте, что возникнут сложности, мы с вами ограничимся лишь скромной ролью стороннего наблюдателя. И поверьте, это совсем не сложно.

Что главное в эксперименте? Приборы? Теоретическая подготовка? Толковый ассистент? Нет, друзья. Единственное, без чего не может обойтись ни один эксперимент, — это экспериментатор. Нет его — нет никакого эксперимента. Пока не появился наблюдатель, который своим пытливым глазом смотрит за исходом опыта, а умелыми руками фиксирует его результаты, то, что происходит, никакой не эксперимент.

Но, оказывается, бывает так, что одно лишь присутствие наблюдателя во время опыта нарушает течение эксперимента, меняет состояние изучаемой системы и заставляет события развиваться в ином направлении. И мы с вами попытаемся разобраться в том, как квантовая механика оценивает такое последствие вмешательства наблюдателя в физическую реальность эксперимента на пяти классических примерах.

Пример первый: «кот Шредингера»

Хрестоматийный пример, навязший на зубах: «кот Шредингера». В герметичный чёрный (да какая на самом деле разница, какого он цвета!) ящик Шредингер (Erwin Schrödinger) прячет условного (воображаемого) кота, ампулу с ядом и спусковой ядерный механизм. Это устройство может в любой момент разбить ампулу и уничтожить животное. Весёленький эксперимент, скажете вы, и будете правы. Единственное оправдание, которое может спасти честь австрийского учёного в том, что опыт исключительно теоретический, и призван продемонстрировать логику размышления физика.

Спусковой механизм в случайный момент может выпустить радиоактивный атом, при распаде которого разобьётся ампула с ядом. Точное время распада не задано. Наблюдателю известно только время полураспада, то есть отрезок времени, за который распад произойдёт с вероятностью «фифти-фифти» — 50 на 50. Таким образом, наблюдая за закрытой коробкой, мы понимаем, что кот внутри своей замкнутой системы существует одновременно в двух состояниях: он либо жив, либо мёртв. Эти оба состояния можно описать волновой «функцией кота» (жив-мёртв), которая на протяжении времени изменяется. Чем дальше мы отдаляемся от начального этапа (кот точно жив), тем больше вероятность того, что ампула уже разбилась и эксперимент закончен (кот мёртв).

Но убедиться в том, что эксперимент закончился, можно, только открыв коробку. Потому до тех пор, пока наблюдатель не проник в замкнутую систему, вероятность того, что кот жив, остаётся, хоть и постоянно стремится к нулю. Таким образом, кот может вечно балансировать на грани жизни и смерти, пока его судьбу не определит учёный, которому надоело стоять над закрытой коробкой. И только тогда происходит коллапс волновой функции и из множества вариантов реализуется лишь один.

Это и есть так называемая копенгагенская интерпретация науки под названием «квантовая механика». Достоверно определить состояние любой системы можно только путём наблюдения. А наблюдатель одним лишь своим присутствием меняет результат исследования. Это и есть загадочный момент, на который указал Шредингер.

Пример второй: «замри-частица»

В 60-х годах прошлого столетия был предсказан квантовый эффект, который впоследствии доказала на практике группа учёных под руководством нобелевского лауреата Вольфганга Кеттерле (Wolfgang Ketterle). Изучая распад возбуждённых атомов рубидия на те же атомы в стабильном состоянии и фотоны, исследователи зафиксировали явное воздействие наблюдателя на результат эксперимента.

Нестабильная радиоактивная частица характеризуется средним временем жизни, которое может увеличиваться, если за ним ведётся пристальное наблюдение. Так, после начала эксперимента учёные начали наблюдать за распадом атомов в двух различных режимах: беспрерывном (система постоянно облучалась слабым световым потоком, фиксировавшим изменения) и импульсном (в систему периодически попадал более мощный, но короткий световой пучок).

Полученный результат оказался весьма интересным. Внешние световые воздействия на систему замедляли распад частиц, возвращая их в исходное состояние. Жизнь возбуждённых атомов рубидия, которые стремительно распадались, удавалось продлить в десятки раз. Эффект вошёл в историю науки под кодовым названием «замри-частица».

Пример третий: «электронный дуализм»

Одним из самых элегантных за всю историю квантовой физики признан опыт с дифракцией электронов, проведённый в 1961 году. Суть опыта заключалась в следующем: на пути потока электронов, летящих к фотофинишу, была установлена медная пластина с двумя щелями.

Если представить пучок электронов как группу маленьких заряженных шариков, можно было ожидать на экране две полосы напротив одной и другой щели. Но на самом деле, на экране появилось иное изображение — зебра сложной конфигурации, состоящая из чередующихся и перекрывающих друг друга светлых и тёмных полос. Результат эксперимента не менялся даже в том случае, если частицы пускались через щель не сплошным потоком, а поодиночке. Каждый из электронов в этот момент проявлял свои волновые функции и мог одновременно пройти через две щели.

Но это была только первая половина эксперимента. Когда физики предприняли попытку зафиксировать результат, картинка на экране вмиг стала классической — две полосы напротив щелей в медной пластине и никакой «странной» зебры. На глазах наблюдателя электроны «потеряли» свою волновую составляющую и продемонстрировали привычную для школьника средних классов картинку. Присутствие наблюдателя оказало воздействие на систему и автоматически изменило результаты самого наблюдения.

Пример четвёртый: «некоторые любят погорячее…»

Кроме электронов, в роли подопытных кроликов часто выступают крупные молекулы, составленные из нескольких десятков атомов углерода (фуллерены). Фуллерен (Fullerenes), составленный из шести десятков атомов, напоминает настоящий футбольный мяч, сшитый из шестиугольников. С этими крупными элементами проводят опыты по дифракции, подобные тем, которые ставят на электронах.

Не так давно венские учёные из группы профессора Цайлингера (Anton Zeilinger) рискнули добавить в опыт «элемент наблюдателя». Во время исследования экспериментаторы обстреливали подвижные фуллерены лазерным излучением. Молекулы нагревались от внешнего воздействия и светились в исследуемом пространстве, тем самым, обнаруживая своё местоположение.

Вместе с началом свечения изменялось и само поведение частиц. Если в «темноте», без присутствия наблюдателя, фуллерены аккуратно обходили препятствия, что выказывало их волновые свойства, то с появлением «зрителя», частицы начинали вести себя как твёрдые тела со всеми вытекающими характеристиками поведения, известными из классической физики.

Пример пятый: «…а некоторые похолоднее»

Но наиболее интересной из всех загадок квантовой физики является загадка принципа неопределённости Гейзенберга (Werner Karl Heisenberg). В популярном изложении он звучит так: одновременно установить и положение и скорость квантового объекта невозможно. То есть, чем точнее мы измеряем импульс элементарной частицы, тем менее точно можно установить, где она в данный момент находится. Это, конечно же, плохо применимо в мире больших объектов и вообще непонятно, что из этого может вытекать даже на элементарном уровне.

Эксперимент группы под управлением профессора Шваба (Keith Schwab) добавил пикантности классической неопределённости Гейзенберга. Разместив на пути движения микрочастиц крошечную алюминиевую полоску, учёные подключили прибор, способный с высочайшей точностью регистрировать её положение. И тут же получили два интересных результата. Во-первых, каждое новое измерение объекта меняло положение пластины. Прибор очень точно определял координаты полоски и тем самым менял её скорость, а, следовательно, и последующее положение в пространстве.

Но если первое открытие было спрогнозировано принципом неопределённости, то второе стало неожиданностью для всех. Измерения, которые делали учёные, приводили к охлаждению полоски. То есть, наблюдатель одним лишь своим присутствием менял физическую характеристику объекта. В данном случае температуру. Сразу нашлось и практическое использование этого эффекта: теперь профессор Шваб думает, как применить это явление для охлаждения сложнейших микросхем.

P. S.: Ощущение, что мир существует лишь в тот момент, пока вы на него смотрите, посещало даже великого Эйнштейна. Но он при этом уверял нас, что это не так. И действительно, как может наблюдающий за луной воздействовать на саму луну? Ну, а вдруг, на самом деле, всё, что происходит вокруг нас, всего лишь плод нашего воображения? И стоит нам уснуть, как мир исчезнет. Или всё-таки правы те, кто говорит, что законы физики мироздания и законы понимания этого мироздания (психики) должны рассматриваться как взаимодополняющие друг друга? Как две части одного большого учения.

Или вообще, это одна и та же наука? И называется она «физика». Потому что по сравнению с физикой всё остальное не более чем коллекционирование марок.

От редакции . Интересуетесь наукой? Заходите в киевский Музей популярной науки и техники «

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.


Научная фантастика – яркое подтверждение тому, что физика может быть интересна не только учёным, но и людям далёким от исследовательских лабораторий. Конечно, в книгах и фильма не рассказывают о научных теориях, а точнее подают физические факты занимательно и интересно. В этом обзоре десятка загадок из области физики, которые учёным ещё предстоит объяснить.

1. Лучи сверхвысоких энергий


Атмосфера Земли постоянно бомбардируется высокоэнергетическими частицами из космоса, которые называются « космическими лучами». Хотя они не наносят большого вреда людям, физики просто очарованы ими. Наблюдение за космическими лучами многому научило ученых об астрофизике и физике частиц. Но есть лучи, которые остаются загадкой по сей день. В 1962 году, во время эксперимента Volcano Ranch, Джон Д. Линсли и Ливио Скарси увидели нечто невероятное: космический луч сверхвысокой энергии с энергией более 16 джоулей.

Чтобы наглядно объяснить сколько это, можно привести следующий пример: один джоуль - это количество энергии, необходимое для поднятия яблока с пола на стол. Вся эта энергия была сосредоточена, однако, в частице в сто миллионов миллиардов раз меньше, чем яблоко. Физики без малейшего понятия, как эти частицы получают подобное невероятное количество энергии.

2. Инфляционная модель Вселенной


Вселенная удивительно равномерная в больших масштабах. Так называемый «космологический принцип» гласит, что куда бы ни отправиться во Вселенной, в среднем везде будет примерно одинаковое количество материала. Но теория Большого Взрыва предполагает, что во время зарождения Вселенной должны были наблюдаться большие различия в плотности. Таким образом, она была намного менее однородная, чем Вселенная сегодня.

Инфляционная модель предполагает, что Вселенная, которую все видят сегодня, происходит из крошечного объема ранней Вселенной. Этот маленький объем внезапно и быстро расширился, намного быстрее, чем Вселенная расширяется сегодня. Грубо говоря, это выглядело так, будто воздушный шарик внезапно надули воздухом. Хотя это объясняет, почему сегодня Вселенная более однородная, физики все еще не знают, что вызвало это «надутие».

3. Темная энергия и темная материя


Это удивительный факт: только около 5 процентов Вселенной состоит из того, что люди могут видеть. Несколько десятилетий назад физики заметили, что звезды на внешних краях галактик вращаются вокруг центра этих галактик быстрее, чем прогнозировалось.Чтобы объяснить это, ученые предположили, что в этих галактиках может быть какая-то невидимая «темная» материя, которая заставила звезды вращаться быстрее.

После появления этой теории дальнейшие наблюдения расширяющейся Вселенной привели к тому, что физики пришли к выводу: темной материи должно быть в пять раз больше, чем все, что могут видеть люди (т. е. обычной материи). Наряду с этим, ученые знают, что расширение Вселенной действительно ускоряется. Это странно, потому что стоило бы ожидать, что гравитационное притяжение материи («обычной» и «темной») замедлит расширение Вселенной.

Чтобы объяснить, что же уравновешивает гравитационное притяжение материи, ученые предположили существование «темной энергии», которая способствует расширению Вселенной. Физики полагают, что по меньшей мере 70 процентов Вселенной находится в форме «темной энергии». Тем не менее по сей день частицы, составляющие темную материю, и поле, которое составляет темную энергию, никогда непосредственно не наблюдались в лаборатории. По сути, ученые ничего не знают о 95 процентах Вселенной.

4. Сердце черной дыры


Черные дыры - одни из самых знаменитых объектов в астрофизике. Их можно описать их как области пространства-времени с такими сильными гравитационными полями, что изнутри даже не может пробиться свет. С тех пор как Альберт Эйнштейн в своей общей теории относительности доказал, что гравитация «искривляет» пространство и время, ученые знают, что свет не защищен от гравитационных эффектов.

Фактически, теория Эйнштейна была доказана во время солнечного затмения, которое продемонстрировало, что гравитация Солнца отклоняет лучи света, идущие от далеких звезд. С тех пор наблюдалось много черных дыр, в том числе огромная, находящаяся в центре нашей галактики. Но тайна того, что происходит в сердце черной дыры, до сих пор не решена.

Некоторые физики считают, что может существовать «сингулярность» - точка бесконечной плотности с некоторой массой, сосредоточенной в бесконечно малом пространстве. Однако, по-прежнему идут дискуссии о том, теряется ли информация внутри черных дыр, которые поглощают все частицы и излучение. Хотя от черных дыр исходит излучение Хокинга, оно не содержит никакой дополнительной информации о том, что происходит внутри черной дыры.

5. Разумная жизнь вне Земли


Люди испокон веков мечтают о пришельцах, когда они смотрят на ночное небо и гадают, может ли там кто-то жить. Но в последние десятилетия было обнаружено множество доказательств того, что это не просто мечта. Для начала, экзопланеты оказались гораздо более распространены, чем предполагалось ранее, причем у большинства звезд имеются планетарные системы. Также известно, что временный разрыв между тем, когда на Земле появилась жизнь, и когда появилась разумная жизнь, очень мал. Означает ли это, что много где должна была сформироваться жизнь.

Если это так, то нужно ответить на знаменитый «парадокс Ферми»: почему люди до сих пор не вступили в контакт с инопланетянами. Возможно, жизнь - обычное явление, но разумная жизнь редка. Может быть, через какое-то время все цивилизации решают не общаться с другими жизненными формами. Может, с людьми просто не хотят разговаривать. Или, как ни странно, возможно, это показывает, что многие инопланетные цивилизации уничтожают себя вскоре после того, как становятся технологически достаточно продвинутыми, чтобы общаться.

6. Путешествие быстрее скорости света


С тех пор как Эйнштейн изменил всю физику своей специальной теорией относительности, физики были уверены, что ничто не может двигаться быстрее скорости света. Фактически, теория относительности говорит, что когда любая масса двигается со скоростью, близкой к скорости света, то для этого требуется огромная энергия. Это видно в космических лучах сверхвысоких энергий, упомянутых ранее. У них необычайная энергия относительно их размера, но и они не путешествуют быстрее скорости света.

Жесткое ограничение скорости света может также объяснить, почему сообщения от чуждых цивилизаций маловероятны. Если они также ограничены этим фактором, то сигналы могут идти тысячи лет. В 2011 году в ходе эксперимента OPERA были получены предварительные результаты, которые предполагали, что нейтрино движутся быстрее скорости света.

Позже исследователи заметили некоторые ошибки в их экспериментальной установке, которые подтвердили, что результаты были неверными. В любом случае, если существует какой-либо способ передачи материи или информации быстрее скорости света, он, несомненно, изменит мир.

7. Способ описать турбулентность


Если вернуться из космоса на Землю, окажется, что и в повседневной жизни есть много вещей, которые трудно понять. За простейшим примером не нужно далеко ходить - можно открыть дома кран. Если открыть его не полностью, то вода будет течь плавно (это называется «ламинарным потоком»). Но если открыть кран полностью, то вода начнет течь неравномерно и разбрызгиваться. Это простейший пример турбулентности. Во многих отношениях турбулентность по-прежнему остается нерешенной проблемой в физике.

8. Сверхпроводник с комнатной температурой


Сверхпроводники - одни из самых важных устройств и технологий, которые когда-либо открыли люди. Это особый тип материала. Когда температура падает достаточно низко, электрическое сопротивление материала падает до нуля. Это означает, что можно получать огромный ток после подачи маленького напряжения на сверхпроводник.

Теоретически электрический ток может течь в сверхпроводящем проводе в течение миллиардов лет без рассеивания, потому что нет сопротивления его току. В современных же обычных проводах и кабелях из-за сопротивления теряется значительная часть мощности. Сверхпроводники могли бы уменьшить эти потери до нуля.

Есть одна проблема - даже высокотемпературные сверхпроводники должны быть охлаждены до температуры в минус 140 градусов по Цельсию, прежде чем они начнут демонстрировать свои замечательные свойства. Охлаждение до столь низких температур обычно требует жидкого азота или чего-то подобного. Поэтому это очень дорого. Многие физики по всему миру пытаются создать сверхпроводник, которые может работать при комнатной температуре.

9. Материя и антиматерия


В некотором смысле, люди до сих пор не знают, почему что-то существует вообще. Для каждой частицы существует «противоположная» частица, называемая античастицей. Итак, для электронов есть позитроны, для протонов существуют антипротоны, и так далее. Если частица когда-либо касается своей античастицы, они аннигилируют и превращаются в излучение.

Неудивительно, что антиматерия невероятно редкая, поскольку все бы просто уничтожилось. Иногда она попадается в космических лучах. Также ученые могут сделать антивещество в ускорителях частиц, но стоить это будет триллионы долларов за грамм. Однако, в целом антиматерия (как считают ученые) невероятно редкая в нашей Вселенной. Почему это так - настоящая тайна.

Просто никто не знает, почему в нашей Вселенной доминирует материя, а не антиматерия, ведь каждый известный процесс, который изменяет энергию (излучение) на вещество, производит одинаковое количество материи и антиматерии. Теория Уайлдера предполагает, что могут существовать целые области Вселенной, в которых доминирует антиматерия.

10. Единая теория


В XX веке были разработаны две великие теории, которые много что объясняли в физике. Одной из них была квантовая механика, в которой подробно описывались, как ведут себя и взаимодействуют крошечные, субатомные частицы. Квантовая механика и стандартная модель физики частиц объяснили три из четырех физических сил в природе: электромагнетизм и сильные и слабые ядерные силы.

Другой большой теорией была общая теория относительности Эйнштейна, объясняющая гравитацию. В общей теории относительности гравитация возникает, когда наличие массы изгибает пространство и время, заставляя частицы следовать по определенным изогнутым траекториям. Это может объяснить вещи, которые происходят в самых грандиозных масштабах - образование галактик и звезд. Есть только одна проблема. Две теории несовместимы.

Ученые не могут объяснить гравитацию способами, которые имеют смысл в квантовой механике, а общая теория относительности не включает эффекты квантовой механики. Насколько можно судить, обе теории верны. Но они, похоже, не работают вместе. Физики уже давно работают над каким-то решением, которое может примирить две теории. Оно называется Великой единой теорией или просто Теорией всего. Поиски продолжаются.

И в продолжение темы мы собрали ещё .

Теперь самое интересное. Картинка усложнилась, но пугаться не стоит. Все очень просто. Поставим перед детекторами (3) и (4) по полупрозрачному зеркалу, как то, что мы использовали вначале. Далее, отправим отраженные фотоны на еще одно полупрозрачное зеркало (слева от источника на схеме). «Холостой» фотон с вероятностью 50% проходит через полупрозрачное зеркало и попадает в детектор (3) или (4) ИЛИ, с вероятностью 50% отражается от ПП, попадает на ПП слева и с 50% вероятностью попадает в (5) или с 50% в (6). Если «холостой» фотон попал в детектор (3) или (4) мы знаем, что исходный фотон прошел соответственно сверху или снизу. Напротив, если сработал детектор (5) или (6) мы не знаем по какому пути прошел фотон. Подчеркну еще раз – при срабатывании (3) или (4) у нас есть информация по какому пути прошел фотон. При срабатывании (5) или (6) такой информации нет. Этой замысловатой схемой мы стираем информацию о том, по какому пути прошел фотон.

Теперь самый ошеломительный результат – если выделить на экране те точки, которые появились при срабатывании (3) или (4) – интерференции нет, но если выделить подмножество точек, которые получались при срабатывании (5) или (6), то они образуют интерференционную картину! Задумайтесь на минуту над этим результатом: фотону не важно, «трогаем» мы его или нет во время эксперимента. С помощью даун–конверторов мы получаем потенциальную информацию о том, где прошел фотон. Если она реализуется (детекторы (3) или (4)) – картина разрушается, но если мы аккуратно стираем ее (срабатывают детекторы (5) или (6)), то нам удается уговорить фотон проинтерферировать. Интерференцию разрушает не механическое вторжение в эксперимент, а наличие информации. Ученые утверждают, что подобные эксперименты проводились не только с фотонами, электронами, но и с целыми молекулами.

Законы нашего мира очень странные и порой контр интуитивны. На макроскопическом уровне может казаться, будто более–менее все понятно. Но стоит начать нам иметь дело с элементарными частицами, как весь наш повседневный опыт рушится. А что нас ждет на планковских масштабах, не смогут предположить даже самые смелые фантасты.

Известно, что до конца своей жизни Альберт Эйнштейн так и не принял квантовую механику с ее неопределенностью, стохастическими, случайными и хаотическими процессами. Это неприятие выразилось в фразах Эйнштейна: «Бог не играет в кости» и «Неужели Луна существует только потому, что на нее смотрит мышь?». Т.е. Эйнштейн стоял на четкой позиции детерминизма физических, в том числе и квантовых процессов. Эйнштейн просто считал, что физики не обнаружили еще те постоянные, которые влияют на поведение квантовых частиц.

P.S.: Этот эксперимент вовсе не мысленный, а вполне реальный и был осуществлен, хоть и выглядел запутаннее и сложнее, чем я здесь описал.