Защита от радиации: простые способы и методы. Способы и средства защиты от радиации и облучения

В понятие радиационной защиты входит комплекс процедур, задачей которых выступает охрана здоровья живых организмов от ионизирующего излучения.

Радиационная защита — это одно из направлений радиобиологии входит поиск способов, как ослабить нарушающее здоровье действие. Существует 2 вида охраны от ионизирующего излучения: физическая и химическая защита от радиации. К физической относится использование ослабляющих материалов и экранов. Среди биологической защиты выделяют прием комплекса исправляющих повреждения энзимов (ферментов).

Способы защиты от радиации

Чтобы «невидимый враг» нанес меньше повреждений организму, необходимо знать, как правильно защититься при воздействии радионуклидных источников. Существует несколько принципов радиационной безопасности, к ним относятся защита:

  • экраном (экранирование источников опасного излучения поглощающими материалами);
  • количеством (уменьшение мощности радиационных источников до минимальных значений);
  • расстоянием (увеличение расстояний от мест излучения к тем, где обитают люди);
  • временем (максимальное сокращение контакта с потенциально опасными источниками).
Методы защиты от радиации: расстоянием, веществом и временем

К основному способу предотвращения облучения относится экранирование – специальные экраны и защитные костюмы могут обеспечить человеку безопасное пребывание в радиационных условиях. Cуществуют такие способы защиты от радиации зависимо от источника излучения:

  1. Защита от нейтронов: надеждой защитой станет полиэтилен, полимеры, бетонные конструкции, а также вода, парафин. Это объясняется тем, что свойство нейтронов – рассеивать энергию на легкие ядра.
  2. Защита от альфа-излучения: респиратор, обычный бумажный лист, резиновые перчатки.
  3. Защита от гамма-излучения: сталь, вольфрам, тантал, свинец (свинцовое стекло) и другие тяжелые металлы, а также бетон. Чем большая плотность металлов, тем интенсивнее происходит поглощение гамма-излучения.
  4. Защита от бета-излучения: стекло, алюминий (а точнее, его тонкий слой), плексиглас (органическое стекло), всем известный противогаз, прием радиопротекторов.

Где встречаются различные виды излучения

Нейтронное излучение обнаруживается при ядерных взрывах, в лабораторных и промышленных установках. Существуют 2 вида источников альфа-излучения: естественных и искусственных. К последним относятся:

  • ядерные реакторы;
  • объекты урановой промышленности;

Эксперименты, которые проводят на ускорителях заряженных частиц и в специализированных лабораториях. К естественным источникам альфа-излучения относятся:

  • ускоренные ядра гелия;
  • ядерный альфа-распад.

Удивительно, но гамма-излучение может исходить от старинных сувениров: в 1902 году радиоактивной глазурью покрывали ювелирные изделия, керамические предметов. Используя подобные добавки происходили цветное стекло. Также, опасные предметы встречаются в таких местах:

  • бывших территориях воинских формирований;
  • старом оборудовании для измерений;
  • медицинских приспособлениях;
  • кучах металлолома.

Бета-излучение находится в естественном радиоактивном поле Земли. Такой вид излучения обнаруживается в некоторых месторождениях руды.


Проценты радиации, получаемые человеком

Защита от проникающей радиации

Этот вид ионизирующего излучения является гамма-излучением и потоком нейтронов, которые возникают из области поражения ядерного взрыва. Проникающая радиация вызывает лучевую болезнь, оказывая на молекулы тканей человека разрушающее действие.

Средствами защиты от проникающей радиации выступают:

  • бронированная техника;
  • подвальные помещения железобетонных и многоэтажных каменных зданий;
  • погреб, убежища глубиной 2 метра, укрытия от 3-его класса.

Защита от радиации на АЭС

Существует определенный алгоритм действий, обязательных для выполнения при происшедшей аварии на АЭС. Правилами также можно пользоваться при передвижении радиоактивного облака в сторону проживания.

Защита от радиации на АЭС осуществляется следующим образом:

  1. Надеть противогаз, маску, респиратор для защиты органов дыхания.
  2. Укрыться в ближайшем сооружении.
  3. Снять с себя всю обувь, верхнюю одежду и завернуть в пленку или пластиковый пакет.
  4. Выключить кондиционер, вентиляцию, закрыть двери, окна.
  5. Заклеить щели в дверях, на окнах, подручными средствами закрыть отверстия вентиляции.
  6. Прополоскать горло, рот, вымыть тело два раза мылом, и промыть глаза чистой водой.
  7. Продукты питания сложить в пакет из полиэтилена, поставить в холодильник, кладовую или шкаф, который закрывается.
  8. Необходимо сделать запасы питьевой воды.
  9. При входе в жилое помещение, важно оставлять уличную обувь за дверью, протерев ее влажной тряпкой. Эти тряпки и другие предметы, используемые при уборке, загрязненную одежду зарыть в яме глубиной от 50-ти см.

В течение 7-ми дней после случившейся катастрофы, важно каждый день принимать йодистый калий (таблетки). Их можно заменить 5%-ым раствором йода, накапанным по 3-5 капель в 250 мл молока (воды) взрослым. Детям показана дозировка 2 капли йода на полстакана воды или молока.

Защита населения от радиации

Система защиты населения должна обеспечиваться порядком общегосударственных процедур. В системе законодательства установлены нормы дозовых нагрузок на население. Нормы радиационной безопасности в ряде стран установлены в индивидуальном порядке ответственной за это постановлением:

  • Россия — НРБ-99/2009;
  • Беларусь — НРБ-2000;
  • Украина — НРБУ-97.

Индивидуальная защита от радиации

Вместе с противогазами и респираторами используются пищевые добавки, принимаемые внутрь. Они не смогут полноценно защитить от радиации, но способны снизить ее токсическое воздействие. Замедлить негативное влияние радионуклидов на организм человека позволяет употребление определенных продуктов питания. К пище, естественно снижающей действие радиации, относятся:

  • орехи;
  • пшеница;
  • белый хлеб;
  • редиска.

Благодаря селену продукты уменьшают риск появления опухолей. К биодобавкам относят хлорелле, ламинарии, и другие продукты на основе водорослей. К радиопротекционным препаратам относятся медуница, заманиха и левзея. Среди фармацевтических средств выделяют:

  • корень женьшеня (доза 50 капель посуточно);
  • экстракт элеутерококка (1,5 ч. л.)

Видео: 5 мифов о радиации

После Чернобыльской катастрофы прошло много времени, и люди стали менее подготовлены на случай атомной аварии или войны. Но многие военные настаивают на том, что каждый человек должен знать как защитить себя от радиации.

Гражданские эксперты считают атомную войну маловероятной. Военные настроены менее оптимистично и настаивают на том, что каждый житель страны должен знать о защите от радиации. Они не утверждают, что произойдет война с применением атомного оружия, но указывают на возможность техногенных катастроф по типу Чернобыля, когда радиоактивные облака заражают обширные территории.

Для понимания способов защиты от нужно знать, что происходит во время детонации тактического заряда или при взрыве атомной электростанции.

Неуправляемая ядерная реакция деления приводит к выбросу огромного количества энергии. Этот процесс сопровождается повышением температуры в эпицентре взрыва до нескольких миллионов градусов и резким ростом давления. Это приводит к образованию 3-х типов волн: световой, тепловой и взрывной. Кроме того, во все стороны от эпицентра начинает распространяться проникающая радиация.

Основные составляющие ядерного взрыва:

  1. Световая и тепловая волна. Их не принято разделять, так как они взаимосвязаны. Подрыв атомного заряда сопровождается ярчайшей вспышкой. Она длится считаные секунды, но этого времени достаточно, чтобы на расстоянии в несколько километров от эпицентра начались пожары, а люди получили сильные ожоги. Если в момент взрыва человек будет смотреть в его сторону, то ослепнет.
  2. Ударная волна. Она приходит вслед за светом и теплом. Расстояние в 18 км она преодолевает всего за 35 секунд. Очень важно успеть спрятаться до ее прихода, но сделать это очень сложно.
  3. Проникающая радиация. Неуправляемая реакция деления ядра вызывает ионизирующее излучение, которое называют первичной радиацией. У нее очень высокая проникающая способность, но она не может распространяться за пределы взрывной волны. После взрыва первичная радиация идет на убыль.
  4. Вторичная радиация. Если человеку повезло пережить световую, тепловую и ударную волну, к тому же он оказался на достаточном расстоянии, чтобы не получить дозу первичной радиации, то ему стоить опасаться вторичной. Она может распространяться на огромные расстояния. Причем дистанция распространения зависит от мощности заряда, типа взрыва, направления и силы ветра.

Самым опасным считается наземный взрыв, так как он дает больше вторичной радиации, которая вместе с пылью оседает в облаках и разносится на огромные расстояния.

Частично защититься от вторичной радиации можно с помощью индивидуальных средств радиационной защиты.

Поведение при атомной угрозе

Городским жителям не стоит надеяться на то, что можно будет спастись от радиационного заражения вне помещений. Если угроза взрыва застала человека дома, то он должен действовать следующим образом:

  1. Закрыться в комнате без окон. Это может быть туалет или ванная комната. Нужно попытаться закрыть все щели по периметру двери и изолировать вентиляцию. Идеальный вариант - спрятаться в подвал при его наличии. Все незакрытые щели будут пропускать зараженные частицы.
  2. В помещение нужно успеть занести предметы первой необходимости: пищу, одежду, воду. Герметичная упаковка - единственный метод защиты продуктов от радиации.
  3. По возможности следует тщательно одеться. На лицо следует надеть маску или респиратор.

Если удастся пережить сам взрыв, тогда придется принимать дополнительные меры защиты от радиации. Ведь вокруг уже будет вторичная радиация, которая может убить так же быстро, как и первичная.

Действие радиации на человека

Первичное излучение при ядерном взрыве состоит из нейтронного потока и Освобождение этой энергии происходит в течение 1 минуты после детонации.

Общая доза первичного излучения до 100 рентген практически не оказывает на человека видимого воздействия. Когда доза возрастает до 200 бэр, у людей, подвергшихся воздействию, происходит изменение состава крови.

Если человек получит облучение в 1 тыс. бэр, то уже через 4 часа у него проявятся симптомы радиационной болезни. Смерть наступит через пару недель.

В реальных условиях большая часть населения получит среднее облучение на уровне 400−500 бэр. Все эти люди уже в первый день будут чувствовать тошноту и большинству из них потребуется медицинская помощь. Скорее всего, половина зараженных все же выздоровеет.

Защита от первичного излучения

Хорошую защиту от жесткого излучения обеспечивают лишь массивные железобетонные сооружения. Стена толщиной в 46 см способна снизить дозу со смертельных 1 тыс. рентген до относительно безопасных 100 бэр.

Еще лучше спрятаться в подвалах, расположенных ниже уровня бетонного пола. Окружающая почва также выступит в роли дополнительной защиты. Всего 66 см грунта снижают интенсивность излучения в 10 раз. Метровый слой почвы снижает интенсивность первичной радиации в 30 раз.

Следует понимать, что обычная одежда практически не защищает от гамма-лучей и нейтронного потока, но способна обеспечить защиту от световой волны.

Первичная радиация сменяется остаточным излучением. Происходит заражение окружающей местности продуктами взрыва.

Защита от остаточной радиации

Она действует на человеческий организм точно так же, как начальное излучение, но характер поражения у них разный.

Поскольку радиоактивные осадки могут выпасть в течение первых минут на большей площади, чем зона поражения взрывной волны, способы защиты от радиоактивного излучения приобретают особое значение.

Практически невозможно просчитать предполагаемую площадь заражения после ядерного взрыва из-за большого числа влияющих факторов. Однако можно с уверенностью сказать, что при подрыве заряда мощностью в несколько мегатонн заражению подвергнутся огромные территории.

Во время раннего выпадения радиоактивных осадков происходит 2 вида поражения биологических организмов:

  1. Непосредственный контакт зараженных элементов с кожей. При этом человек получает .
  2. Непрерывное воздействие на клетки тела гамма-лучей.

С зараженными частицами легко справится защитный костюм от радиации, но от гамма-лучей с его помощью уберечься не получится.

Опасность наведенной радиоактивности

Она возникает во время захвата нейтронов первой волны различными минеральными элементами. Сильнее всего их впитывают натрий и марганец.

Значительно меньше. Дело в том, что она очень быстро теряет свою интенсивность, к тому же встречается лишь на небольших расстояниях от эпицентра удара. На расстоянии в полтора километра выживших точно не будет. Разве что позднее туда придут спасательные команды.

Чтобы защититься от наведенной радиоактивности, нужно спрятаться. Выбирая место схрона, важно следовать одному принципу - любой толстый материал значительно снижает интенсивность заражения, но при этом тяжелые конструкции обеспечивают лучшую защиту в сравнении с легкими материалами. Например, экран из свинца толщиной всего в 10 см обеспечивает такую же защиту, как 1 метр грунта или 60 см бетона.

После взрыва покидать убежище небезопасно, поэтому нужно будет приготовиться к длительному ожиданию.

В районах, расположенных рядом с эпицентром, где радиоактивные осадки начнут выпадать очень быстро, опасное остаточное излучение будет сохраняться в течение нескольких дней.

На большом удалении от эпицентра время ожидания значительно меньше, но только в том случае, если рядом не будет «горячих пятен».

Перед первым выходом из убежища крайне желательно узнать уровень радиации за его пределами. Показателей будет недостаточно, так как он показывает уровень ионизации лишь в непосредственной близости. А ведь рядом с убежищем могут быть «горячие пятна». Поэтому в убежище желательно иметь средства связи с запасными источниками питания. С их помощью можно будет оценить радиационную обстановку в регионе. Наверняка власти на аварийных частотах будут постоянно выдавать нужную информацию.

При возвращении в убежище обязательно нужно промыть слизистые оболочки носа и рта обычным солевым раствором.

Для промывания глаз следует использовать специальные капли с увлажняющим эффектом.

Гигиенические процедуры нужно проводить минимум 2 раза в день вне зависимости от того, совершался выход за пределы убежища или нет.

При первой возможности нужно покинуть зараженную местность. Лучше это сделать вместе с эвакуационной командой, которая должна быть оснащена дополнительными комплектами индивидуальной защиты.

Индивидуальная защита

Еще во времена СССР были разработаны и созданы индивидуальные средства радиационной защиты, позволяющие спастись в случае ядерной катастрофы.

Помимо костюмов, респираторов и противогазов, в магазинах продавались препараты, снижающие негативное воздействие радионуклидов на организм. Конечно, ни одни таблетки не способны обеспечить полную защиту от радиации, но нейтрализовать часть негативного воздействия им под силу. Их можно хранить в домашних условиях.

К таким препаратам относятся:

  1. Йодистый калий. Принимать его нужно по 1 таблетке в сутки. Детям следует давать по половине таблетки.
  2. Раствор йода. Перед употреблением несколько капель нужно растворить в воде.
  3. Настойка корня женьшеня. Разовая терапевтическая доза составляет 50 капель. Детям его давать нельзя.

Нужно знать о том, что орехи, белый хлеб и редис также позволяют бороться с радиацией. Они являются продуктами, снижающими ее негативное воздействие.

Будет нелишним запастись различными витаминными комплексами. Из-за нехватки пищи и солнца у выживших очень быстро разовьется авитаминоз.

В наше время погибнуть от радиационного излучения представляется маловероятным, и все же, такая опасность существует. Защита от радиации требует соблюдения определенных мер предосторожности. Разрушение клеток организма, которое происходит при взаимодействии с радиоактивным предметом, способствует развитию множества опасных заболеваний.

Человек подвергается фоновому излучению довольно часто. Солнце, мрамор, гранит, радоновые газы – все они служат источниками, однако их воздействие на организм незначительно. К сожалению, бывают ситуации, в которых риск подвергнуться облучению довольно велик и знание правил защиты от радиации может спасти жизнь. Превентивные меры состоят из соблюдения 3 постулатов, которые помогут свести к минимуму вредное воздействие радиоактивного облучения : время, преграды и расстояние.

Опасность радиоактивного облучения

Процесс распространения энергии называется радиацией. Инфракрасное, ультрафиолетовое, световое, ионизирующее излучение – все они подпадают под эту категорию. С позиции охраны жизни и средств защиты от радиации вызывает живой интерес ионизирующий тип. При больших дозах облучения процесс ионизации вещества способствует образованию в клетках свободных радикалов, разрушающих целостность клеточной мембраны.

Излучение невозможно различить без нужного оборудования, что делает его очень опасным врагом. Его проникновение происходит через органы дыхательной и пищеварительной систем и через кожный покров. Наиболее активно оно влияет на клетки, находящиеся в процессе деления. Эта особенность делает его воздействие особенно вредоносным для растущего детского организма и требует бережной защиты от радиации.

Помимо развития раковых опухолей, она вызывает следующие заболевания :

  • бесплодие;
  • мутации на клеточном уровне;
  • лейкоз;
  • катаракта;
  • понос;
  • повреждения различных органов;
  • болезни крови;
  • лучевая болезнь.

Следует различать понятия радиация и радиоактивность. Второе – это свойство веществ источать ионизирующее излучение, именно оно требует применения средств защиты от радиации. Первое – это само ионизирующее излучение, блуждающее в открытом пространстве и существующее до поглощения другим веществом.

Допустимые дозы облучения

Внутренняя доза облучения, проникающая в организм вместе с водой и пищей, является самой опасной. К сожалению, способы дезактивации, к которым прибегают при наружном облучении, здесь не работают.

Радиационное излучение окружает человека практически повсюду. Например, газ радон, который в маленьких объемах просачивается из земных недр и оседает в подвальных помещениях и первых этажах зданий. Некоторые бытовые предметы – часы, стрелки которых обработаны радиевой солью или телевизор, также являются источником излучения и требуют защиты от радиации. Классический пример соприкосновения с дозой облучения – процедура ФЛГ, которую в идеале надо проходить ежегодно. Продукты, выращенные в радиоактивной зоне, также являются опаснейшим источником заражения.

Любой предмет наделен возможностью поглощать радиацию, и человеческое тело не является исключением. В связи с этим установлена годовая доза облучения для большей части населения – 1 мЗв. Уровень радиации является безопасным, если он достигает не более 0,5 мЗв/ч (микрозиверт в час). Допустимое облучение при усредненном показателе составляет 0,2 мЗв/ч.

Способы защиты от радиации

При взаимодействии с радиоактивными предметами все способы охраны делятся на 3 типа:

  • профессиональный – для работников, находящихся в очаге поражения;
  • медицинский – применяемый в лечебных учреждениях;
  • общественный – созданный с целью уберечь население.

В социальном аспекте средства защиты от радиации подразумевают использование преград и соблюдение правил времени и расстояния в случае превышения допустимой дозы облучения.

Исходя из названия, не сложно догадаться, что защита от облучения радиацией заключается в уменьшении времени нахождения рядом с предметом, излучающим радиацию. Необходимо минимизировать время пребывания. Именно этот метод применялся во время ликвидации последствий аварии на Чернобыльской АЭС. Для обеспечения защиты от радиации специалистам давалось лишь несколько минут для выполнения своего задания в зоне поражения. Уровень радиации в течение первых часов после взрыва стремительно снижается благодаря распаду изотопов с маленьким жизненным циклом. Затем он падает довольно медленно, поскольку приходит время частиц с большим периодом полураспада.

Во время контакта с предметом, излучающим радиоактивное облучение и представляющим опасность для здоровья, следует немедленно от него отойти. Мощность воздействия снижается при увеличении дистанции между человеком и источником излучения.

Облучение радиацией ослабляется тяжелыми веществами, которые выступают в качестве своеобразного защитного экрана. Воздействие излучения задерживают следующие вещества :

  • сталь, 13 см;
  • вода, 100 мл;
  • кирпич, 40 см;
  • свинец, 8 см;
  • рыхлый грунт, 90 см;
  • плотный грунт, 60 см.

Людям, работающим в помещениях с высоким радиационным фоном, небезопасно присутствовать без соответствующей «амуниции». В качестве способов защиты от радиации существуют специально сконструированные экраны, блокирующие ионизирующее излучение, и радиационный костюм.

Например, альфа-излучение имеет свойство поражать только кожный покров при внешнем воздействии. Чтобы обеспечить защиту от облучения следует использовать респиратор, перчатки, сделанные из резины, плащ из полиэтилена и хлопчатобумажную одежду.

Уберечь себя от бета-излучения немного труднее. Если допустимая доза облучения превышена, экран из стекла или алюминиевого листа и противогаз сослужат хорошую службу. Нет надобности штудировать энциклопедии, чтобы понять, как соорудить убежище: достаточно укрыться в подвале кирпичного или бетонного здания.

Самый сложный способ защиты от радиации – при воздействии гамма-излучения. Материалы, применяемые для изготовления необходимого обмундирования – свинец, вольфрам, чугун и сталь, достаточно дорогостоящие и имеют высокую массу. Как сделать укрытие, если нет возможности определить вид частиц? Кирпичные стены, с внутренней отделкой из металлических листов и полиэтилена помогут укрыться от воздействия любой дозы облучения.

Пищевые добавки против радиации

Нейтрализовать последствия от дозы радиоактивного облучения поможет прием препаратов и продуктов, уменьшающих токсическое воздействие радионуклидов. Природными защитниками являются:

  • белый хлеб;
  • орехи;
  • редиска;
  • пшеница;
  • ламинария (морская капуста);
  • чеснок.

Среди наиболее распространенных средств, помогающих уменьшить годовую дозу облучения, фармацевтика предлагает «Корень женьшеня». Его необходимо принимать по 40 капель два раз в день перед приемом пищи. Элеутерококк, левзея, медуница и заманиха также могут помочь в снижении радиационного воздействия.

Радиационная защита (противолучевая) защита - комплекс методов и средств, направленных на обеспечение безопасных условий труда персонала и жизни населения в условиях возможного воздействия ионизирующего излучения. Методы и средства защиты зависят от характера работы, условий применения радиоактивных веществ и источников ионизирующего излучения. Они включают:

  • - организационные мероприятия (выполнение требований безопасности при размещении предприятий, устройстве рабочих помещений и организации рабочих мест при работе с закрытыми и открытыми источниками, при транспортировке, хранении и захоронении радиоактивных веществ, проведение дозиметрического контроля);
  • - медико-профилактические мероприятия (сокращенный рабочий день, дополнительный отпуск, спецпитание, профилактические медосмотры);
  • - инженерно-технические методы и средства (защита временем и расстоянием, защитное экранирование, применение средств индивидуальной защиты и др.).

Радиационная защита достигается:

  • - нераспространением ядерного оружия и радиоактивных материалов;
  • - строгим контролем со стороны государства и Международного агентства по атомной энергии (МАГАТЭ) над производством, использованием и перемещением радиоактивных материалов;
  • - соблюдением международных договоров о запрещении и нераспространении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой;
  • - разработкой научно-обоснованных правил и норм безопасности при работе с источниками излучений;
  • - профессиональным отбором и высоким уровнем подготовки персонала радиационно-опасных объектов;
  • - соблюдением правил транспортировки и хранения радиоактивных материалов, обращения с ними;
  • - обеспечением высокой эксплуатационной надежности ядерных реакторов и установок;
  • - разработкой планов по защите персонала и населения в случае аварий на радиационно-опасных объектах;
  • - использование эффективных мер защиты при работе с источниками ионизирующего излучения;
  • - контролем за соблюдением требований безопасности при работе с радиоактивными веществами;
  • - дезактивацией местности, транспорта, зданий, объектов окружающей среды, санитарной обработкой людей в случае радиационной аварии;
  • - соблюдением мер предотвращения загрязнения окружающей среды при разработке рудников и переработке радиоактивных руд;
  • - соблюдением правил захоронения радиоактивных отходов.

Основные способы защиты персонала при использовании потенциально-опасных источников облучения, а также населения в случае радиационной аварии включают:

  • - защиту расстоянием;
  • - защиту временем;
  • - экранирование источника ионизирующего излучения;
  • - герметизацию оборудования;
  • - применение индивидуальных средств защиты;
  • - соблюдение правил личной гигиены;
  • - использование радиопротекторов;
  • - санитарную обработку людей;
  • - дезактивацию местности, оборудования, помещений, одежды и др.;
  • - радиационный и медицинский контроль.

Защита расстоянием является наиболее эффективным методом защиты при радиационных авариях, ядерных взрывах, когда население эвакуируется в безопасные районы. В ряде случаев защита расстоянием позволяет в мирное время избежать устройств защитных экранов. Так, увеличить расстояние от источника излучения до человека можно с помощью дистанционного оборудования- манипуляторов, специальных захватов и др.

Основным мероприятием по защите населения от воздействия ионизирующего излучения является зонирование территории вне потенциально-опасного промышленного предприятия, вокруг которого создают санитарно-защитную зону и зону наблюдения.

Санитарно-защитная зона - территория вокруг возможного источника радиоактивных выбросов, на которой уровень облучения может превышать предельно допустимый. Критерием для определения размеров защитной зоны служат пределы годового поступления радиоактивных веществ через органы дыхания и пищеварения и предел дозы внешнего облучения для категории Б, а также допустимая концентрация радиоактивных веществ в атмосфере и воде. В этой зоне устанавливается режим ограничений и проводится радиационный контроль.

Зона наблюдения - территория, на которой возможно влияние радиоактивных выбросов предприятия и облучение проживающего населения может достигнуть установленного предела дозы. На территории зоны наблюдения, которая по площади в 3-4 раза больше санитарно-защитной зоны, также проводится радиационный контроль. Для предприятий атомной промышленности и ядерной энергетики санитарно-защитная зона устанавливается специальными нормативными актами.

Защита временем имеет целью ограничить время пребывания человека в радиационной обстановке. Такой способ защиты применяется при ремонтных и аварийных работах, а также при посещении необслуживаемых помещений с достаточно высоким уровнем радиации. При защите временем обязательно проводится индивидуальный дозиметрический контроль

Защита от внутреннего облучения основана на исключении попадании радиоактивных веществ в организм человека различными путями. С этой целью работа или контакт с ними разрешается при наличии средств индивидуальной защиты (респиратора, противогаза, спецодежды и очков), использовании защитных вытяжек, боксов и устройств мощной вентиляции, обеспечивающей 5-10 кратный объем воздуха за 1 час.

Защита экранированием используется при значительной активности радиоактивного источника. Под термином «экран» понимают различные передвижные или стационарные конструкции, предназначенные для поглощения или ослабления ионизирующего излучения. Экранами служат также стенки контейнеров для перевозки и хранения радиоактивных материалов.

Выбор материала для защитного экрана производится с учетом преобладающего вида излучения, активности источника, расстояния и др.

Для защиты от альфа- излучения достаточен слой воздуха в несколько сантиметров. Можно применять в случае необходимости экраны из обычного стекла, плексигласа, защитную одежду из хлопчатобумажной ткани и резиновые перчатки.

Экраны для защиты от бета - излучения изготавливают из материалов с малой атомной массой (алюминий, плексиглас, карболит и др.), которые дают наименьшее тормозное излучение. Применяют также комбинированные экраны, у которых со стороны источника располагают с малой атомной массой, а за ним - с большой. Возникающие в материале внутреннего экрана (толщину которого принимают равной длине пробега бета-частиц) кванты электромагнитного излучения с малой энергией поглощаются в дополнительном экране с большой атомной массой (свинец, вольфрам и др.).

Для защиты от гамма-излучений применяют материалы с большой атомной массой и высокой плотностью или более легких, но менее дефицитных и более дешевых материалов - стали, чугуна, сплавов меди. Стационарные экраны изготавливают из бетона. Для изготовления смотровых систем используют стекло с жидким наполнителем (бромистым и хлористым цинком), свинцовое стекло и т.д. Экраны для защиты от нейтронного излучения изготавливают из материалов, содержащих водород (вода, парафин), бериллия, графита и др.

Вследствие этого человечество, несмотря на малую изученность данной проблемы, активно занимается разработкой средств и мер защиты организмов от радиации. Так, например, для защиты от воздуха, заражённого радиоактивными частицами можно применять противогазы и респираторы (для шахтёров). Также есть общие методы зажиты такие как:

увеличение расстояния между оператором и источником;

сокращение продолжительности работы в поле излучения;

дистанционное управление;

использование манипуляторов и роботов;

полная автоматизация технологического процесса;

использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

постоянный контроль над уровнем излучения и за дозами облучения персонала.

Ионизирующее излучение: понятие радиации, радиоактивности.

Радиация в переводе с латинского "сияние", "излучение" – процесс распространения потока элементарных частиц и квантов электромагнитного излучения. Радиация вторгается в молекулы и атомы любого вещества повстречавшегося на её пути, вызывает возбуждение атомов и появление ионов (ионизацию), отсюда произошло другое название ионизирующее излучение.

Радиация – это естественный фактор окружающей среды, существовавший задолго до появления человечества и существующий на всём протяжении его развития (есть, даже теории что радиации принадлежит не последняя роль в появлении жизни на Земле).

Все виды радиации опасны?

В общем смысле под определение радиации подпадает любой вид излучения: инфракрасное (тепловое), ультрафиолетовое (солнечная радиация), видимое световое излучение, но только один вид – ионизирующее излучение несёт серьёзную опасность, вторгаясь в любую материю на своём пути, ионизируя и тем самым разрушая её. Ионизирующее излучение не ведает преград, ни бетон, ни железо, ни другой материал не могут сдержать его распространение. Ионизирующее излучение возникает в результате радиоактивного распада ядер некоторых элементов и, в зависимости от частиц его составляющих, подразделяется на два вида: коротковолновое электромагнитное излучение (рентгеновские лучи, гамма-излучение) и корпускулярное излучение, представляющее собой потоки частиц (альфа-частиц, бета-частиц (электронов), нейтронов, протонов, тяжелых ионов и других). Наибольшее распространение имеют: альфа, бета, гамма и рентгеновское излучение.

Виды Ионизирующего излучения

Альфа частицы, представляют собой часть атома, состоящую из 2-ух протонов и 2-ух нейтронов, имеющую положительный заряд и обладающую большой энергией (и разрушительной силой), но довольно громоздки и потому легко уловимы (даже плотная одежда или лист бумаги является для них преградой, при попадании на кожу частицы застревают в ней). Опасно лишь попадание альфа-частиц с пищей, но и этого стоит остерегаться.

Бета-излучение – это поток мельчайших заряженных частиц (электронов), имеет большую проникающую способность, для защиты от этого вида радиации, понадобится более толстая защита: лист алюминия толщиной в несколько мм, дерево в несколько см и т.д.

Гамма-излучение и близкое к нему по свойствам рентгеновское излучение, обладает наибольшей проникающей способностью – это высокоэнергетическое коротковолновое электромагнитное излучение, представляющее собой поток фотонов, имеет нулевой заряд и поэтому не отклоняется при воздействии магнитным полем. Для защиты от такого вида излучения понадобится толстый слой материала с тяжёлыми ядрами (свинец, обеднённый уран, вольфрам). Есть ряд веществ (бор, графит, кадмий), которые способны нейтрализовать гамма-излучение.

Лазерное излучение воздействие Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностями поражения органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.

Можно выделить два направления применения лазеров и отрасли.

Первое направление связано с целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление -медицина - находит все большее развитие.ых приборов связано с определенной опасностью для человека

. Лазерное излучение характеризуется некоторыми особеннос­тями:

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс.);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

4 - Измерение энергетических параметров и характеристик лазерного излучения

Наиболее опасно лазерное излучение с длиной волны :

380¸1400 нм - для сетчатки глаза,

180¸380 нм и свыше 1400 нм - для передних сред глаза,

180¸105 нм (т.е. во всем рассматриваемом диапазоне) - для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;

Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.

Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.

Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Обеспечение лазерной безопасности

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

Мероприятия по защите от СДЯВ

Для спасения жизни поражённых отравляющими веществами необходимо применять антидоты (противоядия). Эффективность антидотов проявляется только в начальных стадиях отравления (5 мин.).

Антидоты способны обезвреживать СДЯВ, попавшие в организм человека. Некоторые антидоты связывают яд, образуя в организме безвредные соединения, другие конкурируют с ядом по действию на ферменты, рецепторы, физиологические системы человека. Они внедряются внутрь путём ингаляции, в виде таблеток или инъекции заранее или сразу после отравления.

Для повышения устойчивости организма к действию вредных веществ, применяются лекарственные препараты, называемые протекторами.

Если человек неожиданно попадает в зону действия отравляющих веществ, не имея при себе никаких защитных средств, то необходимо закрыть нос и рот платком, смоченным водой, нашатырным спиртом, содовым раствором, мочой и быстро покинуть зону в направлении перпендикулярном движению воздуха.

В экстренных случаях применяют изолирующие противогазы. Они позволяют работать там, где полностью отсутствует кислород и даже под водой на глубине до 7 метров. Принцип работы основан на выделении кислорода из химических веществ, при поглощении углекислого газа и влаги, выдыхаемых человеком. Время работы в изолирующем противогазе в зависимости от выполняемой работы может продолжаться от 45 мин до 3 часов.

Международные организации по проблемам защиты от радиации.

Средства защиты организмов от излучения…

Вследствие этого человечество, несмотря на малую изученность данной проблемы, активно занимается разработкой средств и мер защиты организмов от радиации.

Так, например, для защиты от воздуха, заражённого радиоактивными частицами можно применять противогазы и респираторы (для шахтёров). Также есть общие методы зажиты такие как:

увеличение расстояния между оператором и источником;

сокращение продолжительности работы в поле излучения;

экранирование источника излучения;

дистанционное управление;

использование манипуляторов и роботов;

полная автоматизация технологического процесса;

использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

постоянный контроль над уровнем излучения и за дозами облучения персонала.

К средствам индивидуальной защиты можно отнести противорадиационный костюм с включением свинца. Лучшим поглотителем гамма-лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.

Скандинавская компания Handy-fashions.com занимается разработкой защиты от излучения мобильных телефонов, так, например, в этом (2003) году она представила жилет, кепку и шарф предназначенные для защиты от вредного изучения мобильных телефонов. Для их производства используется специальная антирадиационная ткань. Только карман на жилетке выполнен из обычной ткани для устойчивого приёма сигнала. Стоимость полного защитного комплекта от 300 долларов. Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными частицами и предотвращение попадания их в воздух рабочей зоны. Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов и др. Также для защиты помещений с персоналом, в Пензенской государственной архитектурно-строительной академии ведутся разработки по созданию «высокоплотной мастики для защиты от радиации». В состав мастик входят: связующее - резорцино-формальдегидная смола ФР-12, отвердитель - параформальдегид и наполнитель - материал высокой плотности. Известно, что и в медицине для лечения рака применяется способ лучевой терапии, т.е. облучения раковых клеток. Облучение уничтожает раковые клетки, но убивает и только что пересаженные из костного мозга донора стволовые клетки. Решением этой проблемы занялся институт Паттерсона в Манчестере под руководством доктора Радж Чопра (Raj Chopra). Они усовершенствовали метод пересадки стволовых клеток донора больному, который применяется в некоторых случаях при неэффективности стандартных схем. Этим клеткам была добавлена защита от лучевой терапии. Ученые предложили вводить при помощи вируса в донорские клетки специальный ген, который защищает их от повреждающего действия лучевой терапии. Манчестерские ученые, которым удалось на практике создать такие устойчивые к радиации клетки, надеются, что их присутствие в организме поможет активизировать противоопухолевый иммунитет.

) Настоящая методика позволяет осуществлять прогнозирование масштабов зон заражения при авариях на технологических емкостях и хранилищах, при транспортировке железнодорожным, трубопроводным и другими видами транспорта, а также в случае разрушения химически опасных объектов /2/.

2) Методика распространяется на случай выброса СДЯВ в атмосферу в газообразном, парообразном, или аэрозольном состоянии /2/.

3) Масштабы заражения СДЯВ в зависимости от их физических свойств и агрегатного состояния рассчитываются для первичного и вторичного состояния облаков :

- для сжиженных газов – отдельно для первичного и вторичного облака;

- для сжатых газов – только для первичного облака;

- для ядовитых жидкостей , кипящих выше температуры окружающей среды - только для вторичного облака /2/.

4) Исходные данные для прогнозирования масштабов заражения СДЯВ:

Общее количество СДЯВ на объекте и данные о размещении их запасов в технологических емкостях и трубопроводах;

Количество СДЯВ, выброшенных в атмосферу, и характер их разлива на подстилающей поверхности («свободно», «в поддон» или «в обваловку»);

Высота поддона или обваловки складских емкостей;

Метеорологические условия: температура воздуха, скорость ветра на высоте 10м (на высоте флюгера), степень вертикальной устойчивости воздуха /2/ (приложение А).

5) При заблаговременном прогнозировании масштабов заражения на случай производственных аварий в качестве исходных данных рекомендуется принимать: выброс СДЯВ (Q0) – количество СДЯВ в максимальной по объему единичной емкости (технологической, складской, транспортной и др.) , метеорологические условия – инверсия, скорость ветра 1 м/с /2/.

Для прогноза масштабов заражения непосредственно после аварии должны браться конкретные данные о количестве выброшенного (разлившегося) СДЯВ и реальные метеоусловия /2/.

6) Внешние границы зоны заражения СДЯВ рассчитываются по пороговой токсодозе при ингаляционном воздействии на организм человека.

НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ ВРЕДНЫХ ВЕЩЕСТВ НА СРЕДУ ОБИТАНИЯ

Основными источниками загрязнения атмосферы являются естественные (вулканические извержения, пылевые бури, лесные пожары, природный метан, окисление серы и сульфатов и т. п.) и антропогенные (сжигание топлива в промышленных и бытовых установках, промышленность, автотранспорт, теплоэлектростанции, промышленные энергоустановки, предприятия черной металлургии, испарения нефтепродуктов и т. п.) источники. В результате загрязнения возникают следующие негативные последствия:

1) превышение предельно допустимых компонентов многих токсичных веществ в городах и населенных пунктах;

2) образование смога при интенсивных выбросах оксида азота и углеводородов;

3) выпадение кислотных дождей при интенсивных выбросах оксидов серы и азота;

4) появление парникового эффекта при повышенном содержании вышеперечисленных химических веществ и пыли в атмосфере, что способствует повышению средней температуры Земли;

5) разрушение озонового слоя при поступлении оксида азота и соединений хлора в него, что создает опасность ультрафиолетового облучения.

Источниками загрязнения гидросферы являются биологические, химические и физические источники. Антропогенное воздействие на гидросферу приводит к снижению запасов воды, изменению состояния фауны и флоры водоемов, нарушению круговорота многих веществ в биосфере, снижению биомассы планеты и, как следствие, уменьшению воспроизводства кислорода.

Источниками и веществами, загрязняющими почву, являются: тяжелые металлы и их соединения, циклические углеводороды, бензопирен, радиоактивные вещества, нитраты, нитриты, фосфаты, пестициды и т. п. Нарушение верхних слоев земной коры происходит при добыче полезных ископаемых и их обогащении; захоронении бытовых и промышленных отходов, при проведении военных учений или испытаний и т. п. Также почвенный покров существенно загрязняется осадками в зонах рассеивания различных выбросов в атмосфере, пахотные земли загрязняются при внесении удобрений и применении пестицидов.

Антропогенное воздействие на почву сопровождается:

1) отторжением пахотных земель и уменьшением их плодородия;

2) чрезмерным насыщением токсичными веществами растений, что неизбежно приводит к загрязнению продуктов питания растительного и животного происхождения;

3) нарушением биоценозов вследствие гибели насекомых, птиц, животных, некоторых видов растений;

4) загрязнением грунтовых вод, особенно в зоне свалок и сброса сточных вод.

17) Антропогенные опасности среды обитания: источники и уровни загрязнения атмосферного воздуха.

Источником загрязнения атмосферы могут быть любой физический агент, химическое вещество или биологический вид (в основном микроорганизмы), попадающие в окружающую среду или образующиеся в ней в количестве выше естественных. Под атмосферным загрязнением понимают присутствие газов, паров, частиц, твердых и жидких веществ, тепла, колебаний, излучений, которые неблагоприятно влияют на человека, животных, растения, климат, материалы, здания и сооружения.

По происхождению загрязнения делят на природные, вызванные естественными, часто аномальными, процессами в природе, и антропогенные, связанные с деятельностью человека.

На антропогенные загрязнения приходится большая доля в загрязнении атмосферы. Они связаны с развитием производственной деятельности человека и подразделяются на локальные и глобальные. Локальные загрязнения связаны с городами и промышленными регионами. Глобальные загрязнения влияют на биосферные процессы на Земле и распространяются на огромные расстояния, так как воздух находится в постоянном движении. Глобальные загрязнения атмосферы усиливаются из-за того, что вредные вещества из нее попадают в почву, водоемы, а затем снова поступают в атмосферу.

Источники загрязнения атмосферы разделяют на механические, физические и биологические. Механические загрязнения – пыль, фосфаты, свинец, ртуть, образующиеся при сжигании органического топлива и в процессе производства строительных материалов. Физические загрязнения – тепловые,

световые, шумовые, электромагнитные, радиоактивные. Биологические загрязнения являются следствием размножения микроорганизмов и антропогенной деятельности.

Распространенные токсичные вещества, загрязняющие атмосферу:

1) оксид углерода (образуется при лесных пожарах, окислении терпенов и др.);

2) диоксид серы (образуется при вулканических извержениях, окислении серы и сульфатов, рассеянных в море; сжигании топлива в промышленных установках);

3) оксид азота (его источниками являются лесные пожары; автотранспорт, теплоэлектростанции);

4) углеводороды (его источники – лесные пожары, природный метан и природные терпены; автотранспорт, сжигание отходов, холодильная техника, химические заводы, нефтеперерабатывающие заводы);

5) пыль (возникает в результате вулканических извержений, пылевых бурь, лесных пожаров; сжигания топлива в промышленных установках и т. п.).

18) Антропогенные опасности среды обитания: источники и уровни загрязнения гидросферы.

Основными источниками загрязнения и засорения гидросферы (водоемов) является недостаточное очищение сточных вод промышленных и коммунальных предприятий, крупных животноводческих комплексов, отходы производства при разработке рудных ископаемых; воды шахт, рудников; сбросы водного и железнодорожного транспорта; пестициды и т. д. Загрязняющие вещества, попадая в природные водоемы, приводят к качественным изменениям воды, которые проявляются в изменении химического состава воды, в наличии плавающих веществ на поверхности воды и откладывании их на дне водоемов.

Производственные сточные воды загрязнены отходами и выбросами производства. Количественный и качественный состав зависит от отрасли промышленности и ее технологических процессов. Отходы делят на две основные группы: содержащие неорганические примеси (в том числе и токсические) и содержащие яды. К первой группе относятся сточные воды содовых, обогатительных фабрик свинцовых, никелевых руд, в которых содержатся кислоты, щелочи, ионы тяжелых металлов и др. Сточные воды этой группы в основном изменяют физические свойства воды. Сточные воды второй группы сбрасывают нефтеперерабатывающие заводы, предприятия органического синтеза и др.

В стоках содержатся разные нефтепродукты, аммиак, альдегиды, смолы, фенолы и т. п. Вредоносность действия сточных вод этой группы заключается в окислительных процессах, вследствие которых уменьшается содержание в воде кислорода, увеличивается биохимическая потребность в нем. Рост населения, возникновение новых городов увеличивают поступление бытовых стоков во внутренние водоемы, загрязняя их и болезнетворными бактериями.

Все вышеперечисленные факторы приводят к сбою биологического и физического режимов водоемов.

Для очистки сточных вод применяют механический, химический, физико-химический и биологический методы. Когда они применяются вместе, метод очистки и обезвреживания сточных вод является комбинированным. Механический метод позволяет удалить из бытовых сточных вод до 60–75 % нерастворимых примесей, а из промышленных – до 95 %; химический метод – до 95 % нерастворимых примесей и до 25 % – растворимых. Физико-химический метод позволяет удалить тонкодисперсные и растворенные неорганические примеси и разрушить органические и плохо окисляемые вещества. Существует несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды.

Существует много международных организаций, разрабатывающих нормативы и законодательство в

области радиационной безопасности, и отслеживающих все юридические аспекты в этой области (МАГАТЭ,

МКРЗ, ИСАГ и др.). Еще больше организаций, так и ли иначе отслеживающих состояние дел в области

ядерной безопасности (ВОЗ, МКРЗ, МОТ, ПОЗ и др.). Ниже перечислены лишь некоторые их них.

АЯЭ/ОЭСР - Агентство по ядерной энергии Организации экономического сотрудничества и развития.

ВАО АЭС - Всемирная ассоциация организаций, эксплуатирующих АЭС.

ВОЗ - Всемирная организация здравоохранения.

ЗАЯРО - Западноевропейская ассоциация ядерных регулирующих органов

ИНСАГ - Международная консультативная группа по ядерной безопасности, функционирующая под эгидой

МАГАТЭ с 1985 г. и разрабатывающая концептуальные документы по ядерной безопасности.

МАГАТЭ (IAEA) - Международное Агентство по атомной энергии – создано в 1957 для развития

международного сотрудничества в области мирного использования атомной энергии. Объединяет более 100

государств. Местопребывания - Вена.

МКРЕ - Международная Комиссия по радиологическим единицам и измерениям

МКРЗ - Международная Комиссия по радиологической защите, неправительственная научная организация,

основанная в 1928 для разработки основных принципов и рекомендаций по радиационной защите.

МАЯРО - Международная ассоциация ядерных регулирующих органов.

МОТ - Международная организация труда.

МУКРБ - Межучрежденческий Комитет по радиационной безопасности, создан в 1990 для согласования

вопросов радиационной безопасности на международном уровне. Цель МУКРБ - координация

международных усилий в различных направлениях радиационной безопасности. Комитет обеспечил

возможность международным организациям участвовать в консультациях и сотрудничестве в этой области.

Членами Комитета стало большинство перечисленных здесь учреждений.

НКДАР ООН - Научный Комитет Организации Объединенных Наций по действию атомной радиации,

созданный ООН в 1955 для сбора, оценки и распространения информации о воздействии ионизирующего

излучения на здоровье населения.

ПОЗ - Панамериканская организация здравоохранения.

ФАО - Продовольственная и сельскохозяйственная организация Объединенных Наций.

Общая характеристика токсических веществ (ядов).

Что такое производственные яда?

Производственная яд (вредное вещество) - это вещество, которая вследствие нарушения требований безопасности при контакте с организмом может вызывать заболевания или отклонения в состоянии здоровья как при воздействии в вещества, так и в отдаленные периоды жизни современного и будущих поколений.

Из данного определения видно, что почти все химические соединения потенциально вредными веществами в производственных условиях они могут находиться в разном агрегатном состоянии в виде паров, газов, тумана, дыма За а классификации М О Фукса к дыму относятся аэрозоли конденсации с твердой дисперсной фазой, туману - все аэрозоли, имеющих жидкую дисперсную фазфазу.

Как классифицируются производственные яда?

характеру воздействия на организм человека (общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию);

путями проникновения в организм (действие через дыхательные пути, желудочно-кишечную систему, кожные покровы);

химической сущностью (органические, неорганические, смешанные и другие);

степени токсичности: чрезвычайно токсичные (ПДК в воздухе составляет до 0,1 мг/м3), высокотоксичные (ПДК от 0,1 до 1мг/м3), умеренно токсичные (ПДК от 1,1 до 10,0 мг/м3) над 10,0 мг/м3)

степени воздействия на организм (чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные)

Общая характеристика яда?

Патологические процессы, развивающиеся под действием производственных ядов, вызывают в организме человека к нарушению функционального и структурного состояния, необходимого для его нормальной жизнедеятельности

Характер и степень таких изменений под действием яда обусловлен их концентрацией (дозой), времени действия и периодом вывода (елюминации) из организма Токсический эффект химических веществ зависит от индивидуальных х свойств личности, определяется состоянием здоровья человеки.

Промышленные яды могут оказывать на организм человека как местную, так и общее действие

Понятие приемлемого риска.

Приемлемый риск - это такой риск, который в данной ситуации (при данных обстоятельствах, при данном уровне развития науки и технологий) допустим при существующих общественных ценностях. Социально приемлемый риск оценивает не только и не столько абсолютные значения риска с учетом многих аспектов жизнедеятельности, сколько существующие тенденции роста или снижения рисков различных консервативных и новых видов деятельности принимаемых обществом. Приемлемый риск уместно определять на различных уровнях - от организации отрасли экономики до государства.

Необходимость формирования концепции приемлемого (допустимого) риска обусловлена невозможностью создания абсолютно безопасной деятельности (технологического процесса). Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты. На практике это всегда компромисс между достигнутым в обществе уровнем безопасности (исходя из показателей смертности, заболеваемости, травматизма, инвалидности) и возможностями его повышения экономическими, технологическими, организационными и другими методами. Экономические возможности повышения безопасности технических и социотехнических систем не безграничны. Так, на производстве, затрачивая чрезмерные средства на повышение безопасности технических систем, можно ослабить финансирование социальных программ производства (сокращение затрат на приобретение спецодежды, медицинское обслуживание, санаторно-курортное лечение и др.).

В настоящее время с учетом международной практики принято считать, что действие техногенных опасностей (технический риск) должно находиться в пределах от 10 -7 - 10 -6 (смертельных случаев чел -1 · год -1), а величина 10 -6 является максимально приемлемым уровнем индивидуального риска. В российском законодательстве в области безопасности эта величина используется для оценки пожарной безопасности и радиационной безопасности.

Понятие опасностей и их классификация.

Опасность - центральное понятие БЖД, под кото­рым понимаются любые явления, угрожающие жизни и здоровью человека.

Количество признаков, характеризующих опасность, может быть увеличено или уменьшено в зависимости от целей анализа. Данное определение опасности в БЖД поглощает существующие стандартные понятия (опасные и вредные производственные факторы), являясь более объемным, учитывающим все формы деятельности.

Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, несоответствующие условиямжизнедеятельности человека.

Опасности носят потенциальный характер. Актуализация опасностей происходит при определенных условиях, именуемых причинами. Признаками, определяющими опасность, являются: угроза для жизни; возможность нанесения ущерба здоровью; нарушение условий нормального функционирования органов и систем человека. Опасность - понятие относительное.

Признаками, определяющими опасность являются:

1) угроза жизни;

2) возможность нанесения ущерба здоровью;

3) нарушение условий нормального функционирования организма человека и экологических систем.

Классификация опасностей

1) По происхождению опасности бывают: природные, техногенные, экологические, социальные, биологические, антропогенные.

2) По локализации опасности бывают: связанные с литосферой, гидросферой, атмосферой, космосом.

3) По вызываемым последствиям: утомление, заболевания, травмы, аварии, пожары, летальные исходы и т. д.

4) По приносимому ущербу: социальные, технические, экологические, экономические.

5) По сфере проявления опасностей: бытовые, спортивные, производст-венные, дорожно-транспортные, военные.

6) По структуре (строению) опасности делятся на простые и производст-венные, порождаемые взаимодействием простых.

7) По реализуемой энергии опасности делятся на активные и пассивные.

К пассивным относятся опасности, активизирующиеся за счет энергии, носителем которой является сам человек (например, острые предметы).

8) По времени проявления: импульсивные и кумулятивные.

Источники формирования опасности.

1. Сам человек, его деятельность, средства труда;

2. Окружающая среда;

3. Явления и процессы, возникающие в результате взаимодействия человека и окружающей среды.