Определения доверительных интервалов прогноза. Прогнозирование. Доверительный интервал прогноза

§ 4.1. Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1) субъективной ошибочностью выбора вида кривой;

2) погрешностью оценивания параметров кривых;

3) погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:

(4.1.),

где n - длина временного ряда;

L -период упреждения;

Точечный прогноз на момент n+L;

Значение t-статистики Стьюдента;

Средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра приводит к вертикальному сдвигу прямой, погрешность параметра - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию можно представить в виде:

(4.2.),

где - дисперсия отклонений фактических наблюдений от расчетных;

Время упреждения, для которого делается экстраполяция;

N + L ;

t- порядковый номер уровней ряда, t=1,2, ... , n;

Порядковый номер уровня, стоящего в середине ряда,

=(n+1):2

Тогда доверительный интервал можно представить в виде:

(4.3.)

Обозначим корень в выражении (4.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= t a K . Тогда интервальная оценка будет иметь вид:

(4.4.)

Выражение, аналогичное (4.3.), можно получить для полинома второго порядка:

(4.5.)

или

(4.6.)

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:

(4.7.),

где - фактические значения уровней ряда,

Расчетные значения уровней ряда,

n- длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 4.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 4.1. приведены значения K* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n) значения K* уменьшаются, с ростом периода упреждения L значения K* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n: чем больше длина ряда, тем меньшее влияние оказывает период упреждения L.


Таблица 4.1.

Значения К * для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд

Параболический тренд

Длина ряда (n)

Период упреждения (L)

длина ряда (n)

период упреждения (L)

2,6380 2,8748 3,1399

2,4631 2,6391 2,8361

2,3422 2,4786 2,6310

2,2524 2,3614 2,4827

2,1827 2,2718 2,3706

2,1274 2,2017 2,2836

2,0837 2,1463 2,2155

2,0462 2,1000 2,1590

2,0153 2,0621 2,1131

1,9883 2,0292 2,0735

1,9654 2,0015 2,0406

1,9455 1,9776 2,0124

1,9280 1,9568 1,9877

1,9117 1,9375 1,9654

1,8975 1,9210 1,9461

1,8854 1,9066 1,9294

1,8738 1,8932 1,9140

1,8631 1,8808 1,8998

1,8538 1,8701 1,8876

3,948 5,755 8,152

3,459 4,754 6,461

3,144 4,124 5,408

2,926 3,695 4,698

2,763 3,384 4,189

2,636 3,148 3,808

2,536 2,965 3,516

2,455 2,830 3,286

2,386 2,701 3,100

2,330 2,604 2,950

2,280 2,521 2,823

2,238 2,451 2,717

2,201 2,391 2,627

2,169 2,339 2,549

2,139 2,293 2,481

2,113 2,252 2,422

2,090 2,217 2,371

2,069 2,185 2,325

2,049 2,156 2,284

§ 4.2. Проверка адекватности выбранных моделей

Проверка адекватности выбранных моделей реальному процессу (в частности, адекватности полученной кривой роста) строится на анализе случайной компоненты. Случайная остаточная компонента получается после выделения из исследуемого ряда систематической составляющей (тренда и периодической составляющей, если она присутствует во временном ряду). Предположим, что исходный временной ряд описывает процесс, не подверженный сезонным колебаниям, т.е. примем гипотезу об аддитивной модели ряда вида:

(4.8.)

Тогда ряд остатков будет получен как отклонения фактических уровней временного ряда () от выравненных, расчетных ( ):

(4.9.)

При использовании кривых роста вычисляют, подставляя в уравнения выбранных кривых соответствующие последовательные значения времени.

Принято считать, что модель адекватна описываемому процессу, если значения остаточной компоненты удовлетворяют свойствам случайности, независимости, а также случайная компонента подчиняется нормальному закону распределения.

При правильном выборе вида тренда отклонения от него будут носить случайный характер. Это означает, что изменение остаточной случайной величины не связано с изменением времени. Таким образом, по выборке, полученной для всех моментов времени на изучаемом интервале, проверяется гипотеза о зависимости последовательности значений от времени, или, что то же самое, о наличии тенденции в ее изменении. Поэтому для проверки данного свойства может быть использован один из критериев, рассматриваемых в разделе I, например, критерий серий.

Если вид функции, описывающей систематическую составляющую, выбран неудачно, то последовательные значения ряда остатков могут не обладать свойствами независимости, т.к. они могут коррелировать между собой. В этом случае говорят, что имеет место автокорреляция ошибок.

В условиях автокорреляции оценки параметров модели, полученные по методу наименьших квадратов, будут обладать свойствами несмещенности и состоятельности (с этими свойствами знакомятся в курсе математической статистики). В то же время эффективность этих оценок будет снижаться, а, следовательно, доверительные интервалы будут иметь мало смысла в силу своей ненадежности.

Существует несколько приемов обнаружения автокорреляции. Наиболее распространенным является метод, предложенный Д арби ным и Уотсоном. Критерий Д арби на-Уотсона связан с гипотезой о существовании автокорреляции первого порядка, т.е. автокорреляции между соседними остаточными членами ряда. Значение этого критерия определяется по формуле:

(4.10.)

Можно показать, что величина d приближенно равна:

d » 2(1- ) (4.11),

где - коэффициент автокорреляции первого порядка (т.е. парный коэффициент корреляции между двумя рядами и ).

Из последней формулы видно, что если в значениях имеется сильная положительная автокорреляция ( » 1), то величина d=0 , в случае сильной отрицательной автокорреляции ( » -1) d=4. При отсутствии автокорреляции ( » 0) d=2.

Для этого критерия найдены критические границы, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции. Авторами критерия границы определены для 1, 2,5 и 5% уровней значимости . Значения критерия Д арби на-Уотсона при 5% уровне значимости приведены в таблице 4.2. В этой таблице и - соответственно нижняя и верхняя доверительные границы критерия Д арби на-Уотсона; - число переменных в модели; n - длина временного ряда.

Таблица 4.2.

Значения критерия Д арби на-Уотсона d 1 и d 2 при 5% уровне значимости

1,08

1,13

1,16

1,18

1,22

1,”4

1,26

1,27

1,29

1,32

1,33

1,34

1,35

1,36

1,37

1,38

1,49

1,41

1,36

1,37

1,38

1,39

1,41

1,42

1,43

1,44

1,45

1,45

1,46

1,47

1,48

1,48

1,49

1,51

1,51

1,52

1,52

0,95

0,98

1,02

1,05

1,08

1,13

1,15

1,17

1,19

1,21

1,22

1,24

1,26

1,27

1,28

1,31

1,32

1,33

1,34

1,35

1,54

1,54

1,54

1,53

1,53

1,54

1,54

1,54

1,54

1,55

1,55

1,55

1,56

1,56

1,56

1,57

1,57

1,57

1,58

1,58

1,58

1,59

0,82

0,86

0,93

0,97

1,03

1,05

1,08

1,12

1,14

1,16

1,18

1,21

1,23

1,24

1,26

1,27

1,28

1,29

1,75

1,73

1,71

1,69

1,68

1,68

1,67

1,66

1,66

1,66

1,66

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

Применение на практике критерия Д арби на-Уотсона основано на сравнении величины d, рассчитанной по формуле (4.10.), с теоретическими значениями d 1 и d 2 , взятыми из таблицы. Отметим, что большинство программных пакетов статистической обработки данных осуществляет расчет этого критерия (например, ППП "Олимп", "Мезозавр", "Statistica" и др.).

При сравнении величины d с и возможны следующие варианты:

1) Если d < , то гипотеза о независимости случайных отклонений (отсутствие автокорреляции) отвергается;

2) Если d > , то гипотеза о независимости случайных отклонений не отвергается;

3) Если £ d £ , то нет достаточных оснований для принятия решений, т.е. величина попадает в область "неопределенности".

Рассмотренные варианты относятся к случаю, когда в остатках имеется положительная автокорреляция.

Когда же расчетное значение d превышает 2, то можно говорить о том, что в существует отрицательная автокорреляция.

Для проверки отрицательной автокорреляции с критическими значениями и сравнивается не сам коэффициент d, а 4-d.

Для определения доверительных интервалов модели свойство нормальности распределения остатков имеет важное значение . Поскольку временные ряды экономических показателей, как правило, невелики (<50), то проверка распределения на нормальность может быть произведена лишь приближенно, например, на основе исследования показателей асимметрии и эксцесса.

При нормальном распределении показатели асимметрии (А) и эксцесса (Э) равны нулю. Так как мы предполагаем, что отклонения от тренда представляют собой выборку из некоторой генеральной совокупности, то можно определить выборочные характеристики асимметрии и эксцесса, а также их среднеквадратические ошибки.

Если выполняется хотя бы одно из неравенств

(4.17.),

то гипотеза о нормальном характере распределения отвергается.

Другие случаи требуют дополнительной проверки с помощью более мощных критериев.

Пример 4.1.

Программа выдала следующие характеристики ряда остатков:

длина ряда n=20;

коэффициент асимметрии А =0,6;

Коэффициент эксцесса Э=0,7.

На основании этих характеристик можно считать, что:

а) случайная компонента подчиняется нормальному закону распределения;

б) случайная компонента не подчиняется нормальному закону распределения;

в) требуется дополнительная проверка характера распределения случайной компоненты.

Решение:

Определим:


Т. к. одновременно выполняются оба неравенства


§ 4.3. Характеристики точности моделей

Важнейшими характеристиками качества модели, выбранной для прогнозирования, являются показатели ее точности. Они описывают величины случайных ошибок, полученных при использовании модели. Таким образом, чтобы судить о качестве выбранной модели, необходимо проанализировать систему показателей, характеризующих как адекватность модели, так и ее точность.

На практике широко используется относительная ошибка прогноза, выраженная в процентах относительно фактического значения показателя:

(4.19.)

Также используются средние ошибки по модулю (абсолютные и относительные):

(4.20.),

Где n- число уровней временного ряда, для которых определялось прогнозное значение.

Из (4.18.), (4.19.) видно, что если абсолютная и относительная ошибка больше 0, то это свидетельствует о "завышенной" прогнозной оценке, если - меньше 0, то прогноз был занижен.

Очевидно, что все указанные характеристики могут быть вычислены после того, как период упреждения уже окончился, и имеются фактические данные о прогнозируемом показателе или при рассмотрении показателя на ретроспективном участке.

В последнем случае имеющаяся информация делится на две части: по первой - оцениваются параметры модели, а данные второй части рассматриваются в качестве фактических. Ошибки прогнозов, полученные ретроспективно (на втором участке) характеризуют точность применяемой модели.

На практике при проведении сравнительной оценки моделей могут использоваться такие характеристики качества как дисперсия () или среднеквадратическая ошибка прогноза (S):

(4.21.).

Чем меньше значения этих характеристик, тем выше точность модели.

О точности модели нельзя судить по одному значению ошибки прогноза. Например, если прогнозная оценка месячного уровня производства в июне совпала с фактическим значением, то это не является достаточным доказательством высокой точности модели. Надо учитывать, что единичный хороший прогноз может быть получен и по плохой модели, и наоборот.

Следовательно, о качестве применяемых моделей можно судить лишь по совокупности сопоставлений прогнозных значений с фактическими .

Простой мерой качества прогнозов может стать m - относительное число случаев, когда фактическое значение охватывалось интервальным прогнозом:

(4.22.),

где р - число прогнозов, подтвержденных фактическими данными;

q - число прогнозов, не подтвержденных фактическими данными.

Когда все прогнозы подтверждаются, q=0 и m =1.

Если же все прогнозы не подтвердились, то р =0 и m =0.

Отметим, что сопоставление коэффициентов m для разных моделей может иметь смысл при условии, что доверительные вероятности приняты одинаковыми.

Идея экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится ив прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на следующих предположениях:

  • а) развитие исследуемого явления в целом описывается плавной кривой;
  • б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;
  • в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы.

Точечный прогноз для временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t= п + 1, п + 2,..., п + к, где к - период упреждения.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами:

  • 1) выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты;
  • 2) прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой; поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту;
  • 3) тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели (т.е. степени ее близости к фактическим данным), числа наблюдений, горизонта прогнозирования, выбранного пользователем уровня вероятности и других факторов.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид

где о е - стандартная ошибка (среднеквадратическое отклонение от линии тренда); п-р - число степеней свободы (для линейной модели у = a Q + a { t количество параметров р = 2).

Коэффициент / является табличным значением ^-статистики Стьюдента при заданном уровне значимости и числе наблюдений. (Примечание. Табличное значение t можно получить с помощью функции Excel стьюдраспобр.)

Для других моделей величина Щк) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.5.21), величина U(k) зависит прямо пропорционально от точности модели коэффициента доверительной вероятности / , степени углубления в будущее на к шагов вперед, т.е. на момент t=п + к, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границами.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 3.5.4. Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

  • 1. Определить линейную модель зависимости объемов платежей от сроков (времени).
  • 2. Оценить качество (т.е. адекватность и точность) построенной модели на основе исследования:
    • а) случайности остаточной компоненты по критерию «пиков»;
    • б) независимости уровней ряда остатков по ^w-критерию (в качестве критических значений использовать уровни d x = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого г(1) = 0,36;
    • в) нормальности распределения остаточной компоненты по /^-критерию с критическими уровнями 2,7-3,7;
    • г) средней по модулю относительной ошибки.
  • 3. Определить размеры платежей на три последующих месяца (построить точечный и интервальный прогнозы на три шага вперед (при уровне значимости 0,1), отобразить на графике фактические данные, результаты расчетов и прогнозирования).

Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс. руб.

  • 1. Построение модели
  • 1) Оценка параметров модели с помощью надстройки Excel Анализ данных. Построим линейную модель регрессии Y от /. Для проведения регрессионного анализа выполните следующие действия:
    • ? Выберите команду Сервис => Анализ данных.
    • ? В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем нажмите кнопку ок.
    • ? В диалоговом окне Регрессия в поле Входной интервал У введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал X введите адрес диапазона, который содержит значения независимой переменной t. Если выделены и заголовки столбцов, установите флажок Метки в первой строке.
    • ? Выберите параметры вывода (в данном примере - Новая рабочая книга).
    • ? В поле График подбора поставьте флажок.
    • ? В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа будет получен в виде, приведенном на рис. 3.5.11 и 3.5.12.

Рис. 3.5.11.

Второй столбец на рис. 3.5.11 содержит коэффициенты уравнения регрессии а 0 , a v

Кривая роста зависимости объемов платежей от сроков (времени) имеет вид

2) Оценка параметров модели «вручную». В табл. 3.5.8 приведены промежуточные расчеты параметров линейной модели по формулам (3.5.16). В результате расчетов получаем те же значения:


Рис. 3.5.12.

Таблица 3.5.8

y t

(t-T)(y,-y)

у, =a 0 + a x t

Иногда для проверки расчетов полезно проверить введенные формулы. Для этого следует выбрать команду Сервис => Параметры и поставить флажок в окне формулы (рис. 3.5.13).


Рис. 3.5.13.

После этого на листе Excel расчетные значения будут заменены соответствующими формулами и функциями (табл. 3.5.9).

  • 2. Оценка качества модели
  • 1) Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 3.5.10).

При проверке независимости (отсутствияавтокорреляции) определяется отсутствие в ряде остатков систематической составляющей, например, с помощью ^w-критерия Дарбина - Уотсона по формуле (3.4.8):

0t-T)(y t -y )

9t= а о + a x t

=$С$18 + $С$16*А2

=(АЗ - $А$14)

=(ВЗ - $В$14)

=$С$18 + $С$16*АЗ

=$С$18 + $С$16*А4

=$С$18 + $С$16*А5

=$С$18 + $С$16*А6

=$С$18 + $С$16*А7

=$С$18 + $С$16*А8

=$С$18 + $С$16*А9

=(А10 - $А$14)

=(В10 - $В$14)

=$С$18 + $С$16*А10

=$С$18 + $С$16*А11

=(А12 - $А$14)

=(В12 - $В$14)

=$С$18 + $С$16*А12

=$С$18 + $С$16*А13

СРЗНАЧ(Е2:Е13)

Номер

наблюдения

Точки

поворота

е]

( е Г е,-) 2

Так как dw" = 1,88 попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости (см. табл. 3.4.1). Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек [см. формулу (3.5.18)]. Количество поворотных точекр при п = 12 равно 5 (рис. 3.5.14):

Неравенство выполняется (5 > 4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определим с помощью критерия:

где максимальный уровень ряда остатков е тах = 4,962, минимальный уровень ряда остатков e min = -5,283 (см. табл. 3.5.10), а среднеквадратическое отклонение


Рис. 3.5.14.

Получаем

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

Проверка равенства нулю математического ожидания уровней ряда остатков. В нашем случае ё = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Данные анализа ряда остатков приведены в табл. 3.5.11.

2) Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Е оти (табл. 3.5.12).

Получаем

Вывод: - хороший уровень точности модели.

Проверяемое

свойство

Используемая

статистика

Граница

Вывод

Наименова

Значение

верх

Независимость

^-критерий Дарбина - Уотсона

dw = 2,12 dw" = 4-2,12 = = 1,88

Адекватна

Случайность

Критерий

(поворотных

Адекватна

Нормальность

/^-критерий

Адекватна

Среднее е,= 0

/-статистика

Стьюдента

Адекватна

Вывод: модель статистически адекватна

Таблица 3.5.12

Номер

наблю

дения

Номер

наблю

дения

3. Построение точечного и интервального прогнозов на три шага вперед

Для вычисления точечного прогноза в построенную модель подставляем соответствующие значения фактора t = n + к:

Для построения интервального прогноза рассчитаем доверительный интервал. При уровне значимости а = 0,1 доверительная вероятность равна 90%, а критерий Стьюдента при v = п - 2 = 10 равен 1,812. Ширину доверительного интервала вычислим по формуле (3.5.21):

где (можно взять из протокола регрессионного анализа), / = 1,812 (табличное значение можно получить в Excel с помощью функции стьюдраспобр), Т = 6,5,

(находим из табл. 3.5.8);

Таблица 3.5.13

Прогноз

Верхняя граница

Нижняя граница

U( 1) = 6,80

Щ2) = 7,04

Ответ. Модель имеет вид Y(t) = 38,23 + 1,81/. Размеры платежей составят 61,77; 63,58; 65,40 тыс. руб. Следовательно, денежных средств в объеме 120 тыс. руб. на финансирование этого инвеста-


Рис. 3.5.15.

ционного проекта на три последующих месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Если при анализе развития объекта прогноза есть основания принять два базовых допущения экстраполяции, о которых мы говорили выше, то процесс экстраполяции заключается в подстановке соответствующей величины периода упреждения в формулу, описывающую тренд.

Экстраполяция, вообще говоря, дает точечную прогностическую оценку. Интуитивно ощущается недостаточность такой оценки и необходимость получения интервальной оценки с тем, чтобы прогноз, охватывая некоторый интервал значений прогнозируемой переменной, был бы более надежным. Как уже сказано выше, точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, - явление маловероятное. Соответствующая погрешность имеет следующие источники:

1) выбор формы кривой, характеризующей тренд, содержит элемент субъективизма. Во всяком случае часто нет твердой основы для того, чтобы утверждать, что выбранная форма кривой является единственно возможной или тем более наилучшей для экстраполяции в данных конкретных условиях;

2) оценивание параметров кривых (иначе говоря, оценивание тренда) производится на основе ограниченной совокупности наблюдений, каждое из которых содержит случайную компоненту. В силу этого параметрам кривой, а следовательно, и ее положению в пространстве свойственна некоторая неопределенность;

3) тренд характеризует некоторый средний уровень ряда на каждый момент времени. Отдельные наблюдения, как правило, отклонялись от него в прошлом. Естественно ожидать, что подобного рода отклонения будут происходить и в будущем.

Погрешность, связанная со вторым и третьим ее источником, может быть отражена в виде доверительного интервала прогноза при принятии некоторых допущений о свойстве ряда. С помощью такого интервала точечный экстраполяционный прогноз преобразуется в интервальный.

Вполне возможны случаи, когда форма кривой, описывающей тенденцию, выбрана неправильно или когда тенденция развития в будущем может существенно измениться и не следовать тому типу кривой, который был принят при выравнивании. В последнем случае основное допущение экстраполяции не соответствует фактическому положению вещей. Найденная кривая лишь выравнивает динамический ряд и характеризует тенденцию только в пределах периода, охваченного наблюдением. Экстраполяция такого тренда неизбежно приведет к ошибочному результату, причем ошибку такого рода нельзя оценить заранее. В связи с этим можно лишь отметить то, что, по-видимому, следует ожидать рост такой погрешности (или вероятности ее возникновения) при увеличении периода упреждения прогноза.

Одна из основных задач, возникающих при экстраполяции тренда, заключается в определении доверительных интервалов прогноза. Интуитивно понятно, что в основу расчета доверительного интервала прогноза должен быть положен измеритель колеблемости ряда наблюдаемых значений признака. Чем выше эта колеблемость, тем менее определенно положение тренда в пространстве “уровень - время” и тем шире должен быть интервал для вариантов прогноза при одной и той же степени доверия. Следовательно, при построении доверительного интервала прогноза следует учесть оценку колеблемости или вариации уровней ряда. Обычно такой оценкой является среднее квадратическое отклонение (стандартное отклонение) фактических наблюдений от расчетных, полученных при выравнивании динамического ряда.

Прежде чем приступить к определению доверительного интервала прогноза, необходимо сделать оговорку о некоторой условности рассматриваемого ниже расчета. То, что следует далее, является в некоторой мере произвольным перенесением результатов, найденных для регрессии выборочных показателей, на анализ динамических рядов. Дело в том, что предположение регрессионного анализа о нормальности распределения отклонений вокруг линии регрессии не может, по существу, безоговорочно утверждаться при анализе динамических рядов.

Полученные в ходе статистического оценивания параметры не свободны от погрешности, связанной с тем, что объем информации, на основе которой производилось оценивание, ограничен, и в некотором смысле эту информацию можно рассматривать как выборку. Во всяком случае смещение периода наблюдения только на один шаг или добавление, или устранение членов ряда в силу того, что каждый член ряда содержит случайную компоненту, приводит к изменению численных оценок параметров. Отсюда расчетные значения несут на себе груз неопределенности, связанной с ошибками в значении параметров.

В общем виде доверительный интервал для тренда определяется как

где ¾ средняя квадратическая ошибка тренда;

¾ расчетное значение yt ;

¾ значение t -статистики Стьюдента.

Если t = i + L то уравнение определит значение доверительного интервала для тренда, продленного на L единиц времени.

Доверительный интервал для прогноза, очевидно, должен учитывать не только неопределенность, связанную с положением тренда, но возможность отклонения от этого тренда. В практике встречаются случаи, когда более или менее обоснованно для экстраполяции можно применить несколько типов кривых. При этом рассуждения иногда сводятся к следующему. Поскольку каждая из кривых характеризует один из альтернативных трендов, то очевидно, что пространство между экстраполируемыми трендами и представляет собой некоторую “естественную доверительную область” для прогнозируемой величины. С таким утверждением нельзя согласиться. Прежде всего потому, что каждая из возможных линий тренда отвечает некоторой заранее принятой гипотезе развития. Пространство же между трендами не связано ни с одной из них - через него можно провести неограниченное число трендов. Следует также добавить, что доверительный интервал связан с некоторым уровнем вероятности выхода за его границы. Пространство между трендами не связано ни с каким уровнем вероятности, а зависит от выбора типов кривых. К тому же при достаточно продолжительном периоде упреждения это пространство, как правило, становится настолько значительным, что подобный “доверительный интервал” теряет всякий смысл.

При условии учета стандартных ошибок оценок параметров уравнения тренда (которые по определению являются выборочными, а следовательно, могут не являться оценками неизвестных генеральных параметров из-за проявления случайной ошибки репрезентативности), и не рассматривая последовательность преобразований получим общую формулу доверительного интервала прогноза.

где - значение прогноза, рассчитанного по уравнению тренда на период t+L

¾ средняя квадратическая ошибка тренда;

К - коэффициент, учитывающий ошибки коэффициентов уравнения тренда

¾ значение t -статистики Стьюдента.

Коэффициент К рассчитывается следующим образом

n ¾ число наблюдений (длина ряда динамики);

L – число прогнозов

Значение К зависит только от п и L, т. е. продолжительности наблюдения и периода прогнозирования.

Пример расчета прогноза и построения доверительного интервала прогноза.

Оптимальным трендом является линейный тренд . Необходимо рассчитать прогнозы объемов импорта в Германии на 1996 и 1997 год. Для этого необходимо определить значения уровней тренда при значениях временного фактора 14 и 15.

Объем импорта в 1996 г:

Объем импорта в 1997 г:

Стандартная ошибка тренда Sy = 30,727. Коэффициент доверия распределения Стъюдента при уровне значимости 0,05 и числе степеней свобод равен 2,16. Коэффициент К равен 1,428:

Таким образом, нижняя граница первого доверительного интервала равна 378,62: 473,452-30,727*2,16*1,428.

Верхняя граница равна 568,28: 473,452+30,727*2,16*1,428.

Результаты расчетов необходимо оформить в виде таблице и графически

Фактическое значение объема импорта в Германии за 1996 год

Прогнозное значение объема импорта в Германии за 1996 год

Нижняя граница 95% доверительного интервала

Фактическое значение объема импорта в Германии за 1997 год

Прогнозное значение объема импорта в Германии за 1997 год

Верхняя граница 95% доверительного интервала

Данный график рисуется следующим образом:

1) необходимо сделать копию уже существующего графика сглаживания динамического ряда линейным трендом

2) дорисовать недостающие значения (фактические уровни ряда за 1996 и 1997 год, прогнозы на 1996 и 1997 год, а также границы доверительных интервалов).

График в какой-то степени условный, так как точный масштаб вряд ли удастся выставить. Рисовать можно как от руки, так и используя инструменты рисования Excel.

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Планирование и прогнозирование

в условиях рынка»

на тему: Доверительные интервалы прогноза

Оценка адекватности и точности моделей


Глава 1. Теоретическаячасть

Доверительные интервалы прогноза. Оценка адекватности и точности моделей

1.1 Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t , соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1. субъективной ошибочностью выбора вида кривой;

2. погрешностью оценивания параметров кривых;

3. погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:


(1.1.),

где n- длина временного ряда;

L -период упреждения;

y n + L -точечный прогноз на момент n+L;

t a - значение t-статистики Стьюдента;

S p - средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра а о приводит к вертикальному сдвигу прямой, погрешность параметра a 1 - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию

можно представить в виде: (1.2.), - дисперсия отклонений фактических наблюдений от расчетных;

t 1 - время упреждения, для которого делается экстраполяция;

t 1 = n + L ;

t - порядковый номер уровней ряда, t = 1,2,..., n;

- порядковый номер уровня, стоящего в середине ряда,

Тогда доверительный интервал можно представить в виде:

(1.3.),

Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= t a K . Тогда интервальная оценка будет иметь вид:

(1.4.),

Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:


(1.5.), (1.6.),

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:


(1.7.),

где y t - фактические значения уровней ряда,

- расчетные значения уровней ряда,

n - длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении S y , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 1.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 1.1. приведены значения К* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n ) значения К* уменьшаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n : чем больше длина ряда, тем меньшее влияние оказывает период упреждения L .

Таблица 1.1.

Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд Параболический тренд
Длина ряда (п) Период упреждения (L) 1 2 3 длина ряда (п) период упреждения (L) 1 2 3
7 2,6380 2,8748 3,1399 7 3,948 5,755 8,152
8 2,4631 2,6391 2,8361 8 3,459 4,754 6,461
9 2,3422 2,4786 2,6310 9 3,144 4,124 5,408
10 2,2524 2,3614 2,4827 10 2,926 3,695 4,698
11 2,1827 2,2718 2,3706 11 2,763 3,384 4,189
12 2,1274 2,2017 2,2836 12 2,636 3,148 3,808
13 2,0837 2,1463 2,2155 13 2,536 2,965 3,516
14 2,0462 2,1000 2,1590 14 2,455 2,830 3,286
15 2,0153 2,0621 2,1131 15 2,386 2,701 3,100
16 1,9883 2,0292 2,0735 16 2,330 2,604 2,950
17 1,9654 2,0015 2,0406 17 2,280 2,521 2,823
18 1,9455 1,9776 2,0124 18 2,238 2,451 2,717
19 1,9280 1,9568 1,9877 19 2,201 2,391 2,627
20 1,9117 1,9375 1,9654 20 2,169 2,339 2,549
21 1,8975 1,9210 1,9461 21 2,139 2,293 2,481
22 1,8854 1,9066 1,9294 22 2,113 2,252 2,422
23 1,8738 1,8932 1,9140 23 2,090 2,217 2,371
24 1,8631 1,8808 1,8998 24 2,069 2,185 2,325
25 1,8538 1,8701 1,8876 25 2,049 2,156 2,284

Глава 2. Практическая часть

Задание 1.5. Использование адаптивных методов в экономическом прогнозировании

1. Рассчитать экспоненциальную среднюю для временного ряда курса акций фирмы ЮМ. В качестве начального значения экспоненциальной средней взять среднее значение из 5 первых уровней ряда. Значение параметра адаптации а принять равным 0,1.

Таблица 1.2.

Курс акций фирмы IBM

t y t t y t t y t
1 510 11 494 21 523
2 497 12 499 22 527
3 504 13 502 23 523
4 510 14 509 24 528
5 509 15 525 25 529
6 503 16 512 26 538
7 500 17 510 27 539
8 500 18 506 28 541
9 500 19 515 29 543
10 495 20 522 30 541

2. По данным задания №1 рассчитать экспоненциальную среднюю при значении параметра адаптации а равным 0,5. Сравнить графически исходный временной ряд и ряды экспоненциальных средних, полученные при а =0,1 и а =0,5. Указать, какой ряд носит более гладкий характер.

Одной из центральных задач эконометрического моделирования является предсказание (прогнозирование) значений зависимой переменной при определенных значениях объясняющих переменных при определенных значениях объясняющих переменных. Здесь возможен двоякий подход: либо предсказать условное математическое ожидание зависимой переменной (предсказание среднего значения ), либо прогнозировать некоторое конкретное значение зависимой переменной (предсказание конкретного значения ).

Замечание. Некоторые авторы различают такие понятия, как прогнозирование и предсказание. Если значение объясняющей переменной X известно точно, то оценивание зависимой переменной Y называется предсказанием . Если же значение объясняющей переменной X неизвестно точно, то говорят, что делается прогноз значения Y . Такая ситуация характерна для временных рядов. В данном случае мы не будем различать предсказание и прогноз.

Различают точечное и интервальное прогнозирование. В первом случае оценка – некоторое число, во втором – интервал, в котором находится истинное значение зависимой переменной с заданным уровнем значимости.

а) Предсказание среднего значения . Пусть построено уравнение парной регрессии , на основе которого необходимо предсказать условное математическое ожидание . В данном случае значение является точечной оценкой . Тогда естественно возникает вопрос, как сильно может отклониться модельное значение , рассчитанное по эмпирическому уравнению, от соответствующего условного математического ожидания. Ответ на этот вопрос даётся на основе интервальных оценок, построенных с заданным уровнем значимости a при любом конкретном значении x p объясняющей переменной.

Запишем эмпирическое уравнение регрессии в виде

Здесь выделены две независимые составляющие: средняя и приращение . Отсюда вытекает, что дисперсия будет равна

Из теории выборки известно, что

Используя в качестве оценки s 2 остаточную дисперсию S 2 , получим



Дисперсия коэффициента регрессии, как уже было показано

Подставляя найденные дисперсии в (5.41), получим

. (5.56)

Таким образом, формула расчета стандартной ошибки предсказываемого по линии регрессии среднего значения Y имеет вид

. (5.57)

Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере удаления от в любом направлении. Иными словами, больше разность между и , тем больше ошибка с которой предсказывается среднее значение y для заданного значения x p . Можно ожидать наилучшие результаты прогноза, если значения x p находятся в центре области наблюдений X и нельзя ожидать хороших результатов прогноза по мере удаления от .

Случайная величина

(5.58)

имеет распределение Стьюдента с числом степеней свободы n=n –2 (в рамках нормальной классической модели ). Следовательно, по таблице критических точек распределения Стьюдента по требуемому уровню значимости a и числу степеней свободы n=n –2 можно определить критическую точку , удовлетворяющую условию

.

С учетом (5.46) имеем:

.

Отсюда, после некоторых алгебраических преобразований, получим, что доверительный интервал для имеет вид:

, (5.59)

где предельная ошибка D p имеет вид

. (5.60)

Из формул (5.57) и (5.60) видно, что величина (длина) доверительного интервала зависит от значения объясняющей переменной x p : при она минимальна, а по мере удаления x p от величина доверительного интервала увеличивается (рис. 5.4). Таким образом, прогноз значений зависимой переменной Y по уравнению регрессии оправдан, если значение x p объясняющей переменной X не выходит за диапазон ее значений по выборке (причем более точный, чем ближе x p к ). Другими словами, экстраполяция кривой регрессии, т.е. её использование вне пределов обследованного диапазона значений объясняющей переменной (даже если она оправдана для рассматриваемой переменной исходя из смысла решаемой задачи) может привести к значительным погрешностям .

б) Предсказание индивидуальных значений зависимой переменной . На практике иногда более важно знать дисперсию Y , чем ее средние значения или доверительные интервалы для условных математических ожиданий. Это связано с тем, что фактические значения Y варьируют около среднего значения . Индивидуальные значения Y могут отклоняться от на величину случайной ошибки e, дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения Y должны включать не только стандартную ошибку , но и случайную ошибку S . Это позволяет определять допустимые границы для конкретного значения Y .

Пусть нас интересует некоторое возможное значение y 0 переменной Y при определенном значении x p объясняющей переменной X . Предсказанное по уравнению регрессии значение Y при X =x p составляет y p . Если рассматривать значение y 0 как случайную величину Y 0 , а y p – как случайную величину Y p , то можно отметить, что

,

.

Случайные величины Y 0 и Y p являются независимыми, а следовательно, случайная величина U = Y 0 –Y p имеет нормальное распределение с

И . (5.61)

Используя в качестве s 2 остаточную дисперсию S 2 , получим формулу расчета стандартной ошибки предсказываемого по линии регрессии индивидуального значения Y :

. (5.63)

Случайная величина

(5.64)

имеет распределение Стьюдента с числом степеней свободы k =n –2. На основании этого можно построить доверительный интервал для индивидуальных значений Y p :

, (5.65)

где предельная ошибка D u имеет вид

. (5.66)

Заметим, что данный интервал шире доверительного интервала для условного математического ожидания (см. рис. 5.4).

Пример 5.5. По данным примеров 5.1-5.3 рассчитать 95%-ый доверительный интервал для условного математического ожидания и индивидуального значения при x p =160.

Решение. В примере 5.1 было найдено . Воспользовавшись формулой (5.48), найдем предельную ошибку для условного математического ожидания

Тогда доверительный интервал для среднего значения на уровне значимости a=0,05 будет иметь вид

Другими словами, среднее потребление при доходе 160 с вероятностью 0,95 будет находиться в интервале (149,8; 156,6).

Рассчитаем границы интервала, в котором будет сосредоточено не менее 95% возможных объёмов потребления при уровне дохода x p =160, т.е. доверительный интервал для индивидуального значения . Найдем предельную ошибку для индивидуального значения

Тогда интервал, в котором будут находиться, по крайней мере, 95% индивидуальных объёмов потребления при доходе x p =160, имеет вид

Нетрудно заметить, что он включает в себя доверительный интервал для условного среднего потребления. â

ПРИМЕРЫ

Пример 5.65. По территориям региона приводятся данные за 199X г. (таб. 1.1).

2. Построить линейное уравнение парной регрессии y на x и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Проверить качество уравнения регрессии при помощи F -критерия Фишера.

4. Выполнить прогноз заработной платы y при прогнозном значении среднедушевого прожиточного минимума x , составляющем 107% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a=0,05. Сделать выводы.

Решение

1. Для определения степени тесноты связи обычно используют коэффициент корреляции :

где , – выборочные дисперсии переменных x и y . Для расчета коэффициента корреляции строим расчетную таблицу (табл. 5.4):

Таблица 5.4

x y xy x 2 y 2 e 2
148,77 -15,77 248,70
152,45 -4,45 19,82
157,05 -23,05 531,48
149,69 4,31 18,57
158,89 3,11 9,64
174,54 20,46 418,52
138,65 0,35 0,13
157,97 0,03 0,00
144,17 7,83 61,34
157,05 4,95 24,46
146,93 12,07 145,70
182,83 -9,83 96,55
Итого 1574,92
Среднее значение 85,58 155,75 13484,00 7492,25 24531,42

По данным таблицы находим:

, , , ,

, , , ,

, .

Таким образом, между заработной платой (y) и среднедушевым прожиточным минимумом (x) существует прямая достаточно сильная корреляционная зависимость .

Для оценки статистической значимости коэффициента корреляции рассчитаем двухсторонний t-критерий Стьюдента :

который имеет распределение Стьюдента с k =n –2 и уровнем значимости a. В нашем случае

и .

Поскольку , то коэффициент корреляции существенно отличается от нуля.

Для значимого коэффициента можно построить доверительный интервал , который с заданной вероятностью содержит неизвестный генеральный коэффициент корреляции. Для построения интервальной оценки (для малых выборок n <30), используют z-преобразование Фишера :

Распределение z уже при небольших n является приближенным нормальным распределением с математическим ожиданием и дисперсией . Поэтому вначале строят доверительный интервал для M[z ], а затем делают обратное z -преобразование. Применяя z -преобразование для найденного коэффициента корреляции, получим

Доверительный интервал для M(z ) будет иметь вид

,

где t g находится с помощью функции Лапласа F(t g)=g/2. Для g=0,95 имеем t g =1,96. Тогда

или . Обратное z -преобразование осуществляется по формуле

В результате находим

.

В указанных границах на уровне значимости 0,05 (с надежностью 0,95) заключен генеральный коэффициент корреляции r.

2. Таким образом, между переменными x и y имеет существенная корреляционная зависимость. Будем считать, что эта зависимость является линейной. Модель парной линейной регрессии имеет вид

,

где y – зависимая переменная (результативный признак), x – независимая (объясняющая) переменная, e – случайные отклонения, b 0 и b 1 – параметры регрессии. По выборке ограниченного объема можно построить эмпирическое уравнение регрессии:

где b 0 и b 1 – эмпирические коэффициенты регрессии. Для оценки параметров регрессии обычно используют метод наименьших квадратов (МНК ). В соответствие с МНК, сумма квадратов отклонений фактических значений зависимой переменной y от теоретических была минимальной:

,

где отклонения y i от оцененной линии регрессии. Необходимым условием существования минимума функции двух переменных является равенство нулю ее частных производных по неизвестным параметрам b 0 и b 1 . В результате получаем систему нормальных уравнений:

Решая эту систему, найдем

, .

По данным таблицы находим

Получено уравнение регрессии:

Параметр b 1 называется коэффициентом регрессии . Его величина показывает среднее изменение результата с изменением фактора на одну единицу. В рассматриваемом случае, с увеличением среднедушевого минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб .

,

где F подчиняется распределению Фишера с уровнем значимости a и степенями свободы k 1 =1 и k 2 =n –2. В нашем случае

.

Поскольку критическое значение критерия равно

и , то признается статистическая значимость построенного уравнения регрессии. Отметим, что для линейной модели F - и t -критерии связаны равенством , что можно использовать для проверки расчётов.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Прогнозное значение y p определяется путем подстановки в уравнение регрессии (1.16) соответствующего (прогнозного) значения x p

ЛЕКЦИЯ 5 99

§5.2. Анализ точности оценок коэффициентов регрессии 99

5.2.1. Оценка дисперсии случайного отклонения 99

5.2.2. Проверка гипотез относительно коэффициентов регрессии 100

5.2.3. Интервальные оценка коэффициентов регрессии 103

§5.3. Показатели качества уравнения регрессии 104

5.3.1. Коэффициент детерминации 104

5.3.2. Проверка общего качества уравнения регрессии: F-тест 106

5.3.3. Проверка общего качества уравнения регрессии: t-тест 108

§5.4. Интервалы прогноза по уравнению регрессии 108