Распределение Пуассона (закон редких событий). Распределение пуассона

Краткая теория

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Для определения вероятности появлений события в этих испытаниях используют формулу Бернулли . Если же велико, то пользуются или . Однако эта формула непригодна, если мала. В этих случаях ( велико, мало) прибегают к асимптотической формуле Пуассона .

Поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно раз. Сделаем важное допущение: произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных значениях , остается неизменным.

Пример решения задачи

Задача 1

На базе получено 10000 электроламп. Вероятность того, что в пути лампа разобьется, равна 0,0003. Найдите вероятность того, что среди полученных ламп будет пять ламп разбито.

Решение

Условие применимости формулы Пуассона:

Если вероятность появления события в отдельном испытании достаточно близка к нулю, то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

Пусть событие – 5 ламп будет разбито

Воспользуемся формулой Пуассона:

В нашем случае:

Ответ

Задача 2

На предприятии 1000 единиц оборудования определенного вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

Решение

Случайная величина – число отказов оборудования, может принимать значения

Воспользуемся законом Пуассона:

Найдем эти вероятности:

.

Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона равна параметру этого распределения:

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Распределение Пуассона.

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть событие А появляется некоторое число раз в фиксированном участке пространства (интервале, площади, объеме) или промежутке времени с постоянной интенсивностью. Для определенности рассмотрим последовательное появление событий во времени, называемое потоком событий. Графически поток событий можно иллюстрировать множеством точек, расположенных на оси времени.

Это может быть поток вызовов в сфере обслуживания (ремонт бытовой техники, вызов скорой помощи и др.), поток вызовов на АТС, отказ в работе некоторых частей системы, радиоактивный распад, куски ткани или металлические листы и число дефектов на каждом из них и др. Наиболее полезным распределение Пуассона оказывается в тех задачах, где требуется определить лишь число положительных исходов («успехов»).

Представим себе булку с изюмом, разделенную на маленькие кусочки равной величины. Вследствие случайного распределения изюминок нельзя ожидать, что все кусочки будут содержать их одинаковое число. Когда среднее число изюминок, содержащееся в этих кусочках, известно, тогда распределение Пуассона задает вероятность того, что любой взятый кусочек содержит X =k (k = 0,1,2,...,)число изюминок.

Иначе говоря, распределение Пуассона определяет, какая часть длинной серии кусочков будет содержать равное 0, или 1, или 2, или и т.д. число изюминок.

Сделаем следующие предположения.

1. Вероятность появления некоторого числа событий в данном промежутке времени зависит только от длины этого промежутка, а не от его положения на временной оси. Это свойство стационарности.

2. Появление более одного события в достаточно малом промежутке времени практически невозможно, т.е. условная вероятность появления в этом же интервале другого события стремится к нулю при ® 0. Это свойство ординарности.

3. Вероятность появления данного числа событий на фиксированном промежутке времени не зависит от числа событий, появляющихся в другие промежутки времени. Это свойство отсутствия последействия.

Поток событий, удовлетворяющий перечисленным предложениям, называется простейшим .

Рассмотрим достаточно малый промежуток времени . На основании свойства 2 событие может появиться на этом промежутке один раз или совсем не появиться. Обозначим вероятность появления события через р , а непоявления – через q = 1-p. Вероятность р постоянна (свойство 3) и зависит только от величины (свойство 1). Математическое ожидание числа появлений события в промежутке будет равно 0×q + 1×p = p . Тогда среднее число появления событий в единицу времени называется интенсивностью потока и обозначается через a, т.е. a = .

Рассмотрим конечный отрезок времени t и разделим его на n частей = . Появления событий в каждом из этих промежутков независимы (свойство 2). Определим вероятность того, что в отрезке времени t при постоянной интенсивности потока а событие появится ровно X = k раз и не появится n – k . Так как событие может в каждом из n промежутков появиться не более чем 1 раз, то для появления его k раз на отрезке длительностью t оно должно появиться в любых k промежутках из общего числа n. Всего таких комбинаций , а вероятность каждой равна . Следовательно, по теореме сложения вероятностей получим для искомой вероятности известную формулу Бернулли

Это равенство записано как приближенное, так как исходной посылкой при его выводе послужило свойство 2, выполняемое тем точнее, чем меньше . Для получения точного равенства перейдем к пределу при ® 0 или, что то же, n ® . Получим после замены

P = a = и q = 1 – .

Введем новый параметр = at , означающий среднее число появлений события в отрезке t . После несложных преобразований и переходу к пределу в сомножителях получим.

= 1, = ,

Окончательно получим

, k = 0, 1, 2, ...

е = 2,718... –основание натурального логарифма.

Определение . Случайная величина Х , которая принимает только целые, положительные значения 0, 1, 2, ... имеет закон распределения Пуассона с параметром , если

для k = 0, 1, 2, ...

Распределение Пуассона было предложено французским математиком С.Д. Пуассоном (1781-1840 гг). Оно используется для решения задач исчисления вероятностей относительно редких, случайных взаимно независимых событий в единицу времени, длины, площади и объема.

Для случая, когда а) – велико и б) k = , справедлива формула Стирлинга:

Для расчета последующих значений используется рекуррентная формула

P (k + 1) = P (k ).

Пример 1. Чему равна вероятность того, что из 1000 человек в данный день родились: а) ни одного, б) один, в) два, г) три человека?

Решение. Так как p = 1/365, то q = 1 – 1/365 = 364/365 » 1.

Тогда

а) ,

б) ,

в) ,

г) .

Следовательно, если имеются выборки из 1000 человек, то среднее число человек, которые родились в определенный день, соответственно будут равны 65; 178; 244; 223.

Пример 2. Определить значение , при котором с вероятностью Р событие появилось хотя бы один раз.

Решение. Событие А = {появиться хотя бы один раз} и = {не появиться ни одного раза}. Следовательно .

Отсюда и .

Например, для Р = 0,5 , для Р = 0,95 .

Пример 3. На ткацких станках, обслуживаемых одной ткачихой, в течение часа происходит 90 обрывов нити. Найти вероятность того, что за 4 минуты произойдет хотя бы один обрыв нити.

Решение. По условию t = 4 мин. и среднее число обрывов за одну минуту , откуда . Требуемая вероятность равна .

Свойства . Математическое ожидание и дисперсия случайной величины, имеющей распределение Пуассона с параметром , равны:

M (X ) = D (X ) = .

Эти выражения получаются прямыми вычислениями:

Здесь была осуществлена замена n = k – 1 и использован тот факт, что .

Выполнив преобразования, аналогичные использованным при выводе М (X ), получим

Распределение Пуассона используется для аппроксимации биноминального распределения при больших n

Например, регистрируется количество дорожных происшествий за неделю на определенном участке дороги. Это число представляет собой случайную величину, которая может принимать значения: (верхнего предела нет). Число дорожных происшествий может быть каким угодно большим. Если рассмотреть какой-либо короткий временной промежуток в течение недели, скажем минуту, то происшествие либо произойдет на его протяжении, либо нет. Вероятность дорожного происшествия в течение отдельно взятой минуты очень мала, и примерно такая же она для всех минут.

Распределение вероятностей числа происшествий описывается формулой:

где m - среднее количество происшествий за неделю на определенном участке дороги; е - константа, равная 2,718...

Характерные особенности данных, для которых наилучшим образом подходит распределение Пуассона, следующие:

1. Каждый малый интервал времени может рассматриваться как опыт, результатом которого является одно из двух: либо происшествие (“успех”), либо его отсутствие (“неудача”). Интервалы столь малы, что может быть только один “успех” в одном интервале, вероятность которого мала и неизменна.

2. Число “успехов" в одном большом интервале не зависит от их числа в другом, т.е. “успехи” беспорядочно разбросаны по временным промежуткам.

3. Среднее число “успехов” постоянно на протяжении всего времени. Распределение вероятностей Пуассона может быть использовано не только при работе со случайными величинами на временных интервалах, но и при учете дефектов дорожного покрытия на километр пути или опечаток на страницу текста. Общая формула распределения вероятностей Пуассона:

где m - среднее число “успехов” на единицу.

В таблицах распределения вероятностей Пуассона значения табулированы для определенных значений m и

Пример 2.7. В среднем на телефонной станции заказывают три телефонных разговора в течение пяти минут. Какова вероятность, что будет заказано 0, 1,2, 3, 4 или больше четырех разговоров в течение пяти минут?

Применим распределение вероятностей Пуассона, так как:

1. Существует неограниченное количество опытов, т.е. маленьких отрезков времени, когда может появиться заказ на телефонный разговор, вероятность чего мала и постоянна.

2. Считается, что спрос на телефонные разговоры беспорядочно распределен во времени.

3. Считается, что среднее число телефонных разговоров в любом -минутном отрезке времени одинаково.

В этом примере среднее число заказов равно 3 за 5 минут. Отсюда, распределение Пуассона:

При распределении вероятностей Пуассона, зная среднее число “успехов” на 5-минутном промежутке (например как в примере 2.7), для того чтобы узнать среднее число “успехов” за один час, нужно просто умножить на 12. В примере 2.7 среднее число заказов в час составит: 3 х 12 = 36. Аналогично, если требуется определить среднее число заказов в минуту:

Пример 2.8. В среднем за пять дней рабочей недели на автоматической линии происходят 3,4 неполадок. Какова вероятность двух неполадок в каждый день работы? Решение.

Можно применить распределение Пуассона:

1. Существует неограниченное количество опытов, т.е. малых промежутков времени, в течение каждого из них может произойти или не произойти неполадка на автоматической линии. Вероятность этого для каждого промежутка времени мала и постоянна.

2. Предполагается, что неполадки беспорядочно расположены во времени.

3. Предполагается, что среднее число неполадок в течение любых пяти дней постоянно.

Среднее число неполадок равно 3, 4 за пять дней. Отсюда число неполадок в день:

Следовательно,

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину , которая может принимать только целые, неотрицательные значения:

причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина распределена по закону Пуассона, если вероятность того, что она примет определенное значение , выражается формулой

где а – некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины , распределенной по закону Пуассона, имеет вид:

Убедимся, прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. что сумма всех вероятностей равна единице. Имеем:

.

На рис. 5.9.1 показаны многоугольники распределения случайной величины , распределенной по закону Пуассона, соответствующие различным значениям параметра . В таблице 8 приложения приведены значения для различных .

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины , распределенной по закону Пуассона. По определению математического ожидания

.

Первый член суммы (соответствующий ) равен нулю, следовательно, суммирование можно начать с :

Обозначим ; тогда

. (5.9.2)

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины .

Для определения дисперсии найдем сначала второй начальный момент величины :

По ранее доказанному

кроме того,

Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна её математическому ожиданию .

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины , распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного . Обозначим эту вероятность :

Очевидно, вероятность может быть вычислена как сумма

Однако значительно проще определить её из вероятности противоположного события:

(5.9.4)

В частности, вероятность того, что величина примет положительное значение, выражается формулой

(5.9.5)

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1. Вероятность попадания того или иного числа точек на отрезок зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределяются на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через .

2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3. Вероятность попадания на малый участок двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины и рассмотрим дискретную случайную величину – число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина имеет закон распределения Пуассона. Для этого вычислим вероятность того, что на отрезок попадет ровно точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно (т.к. на единицу длины попадает в среднем точек). Согласно условию 3 для малого отрезка можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание числа точек, попадающих на участок , будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при можно считать вероятность того, что на участок попадет одна (хотя бы одна) точка, равной , а вероятность того, что не попадет ни одной, равной .

Воспользуемся этим для вычисления вероятности попадания на отрезок ровно точек. Разделим отрезок на равных частей длиной . Условимся называть элементарный отрезок «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок окажется «занятым», приближенно равна ; вероятность того, что он окажется «пустым», равна . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью . Найдем вероятность того, что среди отрезков будет ровно «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая ,

(5.9.7)

При достаточно большом эта вероятность приближенно равна вероятности попадания на отрезок ровно точек, так как попадание двух или больше точек на отрезок имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение , нужно в выражении (5.9.7) перейти к пределу при :

(5.9.8)

Преобразуем выражение, стоящее под знаком предела:

(5.9.9)

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при , очевидно, стремятся к единице. Выражение от не зависит. Числитель последней дроби можно преобразовать так:

(5.9.10)

При и выражение (5.9.10) стремится к . Таким образом, доказано, что вероятность попадания ровно точек в отрезок выражается формулой

где , т.е. величина Х распределена по закону Пуассона с параметром .

Отметим, что величина по смыслу представляет собой среднее число точек, приходящееся на отрезок .

Величина (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок попадет хотя бы одна точка:

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек , попадающих в любую область (плоскую или пространственную), распределяются по закону Пуассона:

где – среднее число точек, попадающих в область .

Для плоского случая

где – площадь области ; для пространственного

где - объем области .

Заметим, что для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности () несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножение плотности на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему. (Подробнее об этом см. n° 19.4)

Наличие случайных точек, разбросанных на линии, на плоскости или объеме – неединственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

, (5.9.12)

если одновременно устремлять число опытов к бесконечности, а вероятность – к нулю, причем их произведение сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

. (5.9.14)

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

, (5.9.16)

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов , в каждом из которых событие имеет очень малую вероятность . Тогда для вычисления вероятности того, что событие появится ровно раз, можно воспользоваться приближенной формулой:

, (5.9.17)

где - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона – выражать биномиальное распределение при большом числе опытов и малой вероятности события – происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

Кв.м. Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение. . По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции пользуемся таблицей 2 приложения).

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 куб. дм воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб.

Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель попадет: ни одного снаряда, один снаряд, два снаряда.

Решение. Имеем . По таблице 8 приложения находим вероятности.

Снова напомним ситуацию, которая была названа схемой Бернулли: производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р . Тогда для определения вероятности того, что в этих n испытаниях событие А появится ровно k раз (такая вероятность обозначалась P n (k ) ) может быть точно вычислена по формуле Бернулли , гдеq =1− p . Однако при большом числе испытаний n расчеты по формуле Бернулли становятся очень неудобными, так как приводят к действиям с очень большими числами. Поэтому (если помните это когда-то проходилось при изучении схемы и формулы Бернулли при изучении первой части теории вероятностей «Случайные события») при больших n предлагались значительно более удобные (хотя и приближенные) формулы, которые оказывались тем точнее, чем больше n (формула Пуассона, локальная и интегральная формула Муавра-Лапласа). Если в схеме Бернулли число опытов n велико, а вероятность р появления события А в каждом испытании мала, то хорошее приближение дает упомянутая формула Пуассона
, где параметра = n p . Эта формула и приводит к распределению Пуассона. Дадим точные определения

Дискретная случайная величина Х имеет распределение Пуассона , если она принимает значения 0, 1, 2, ... с вероятностями р 0 , р 1 , ... , которые вычисляются по формуле

а число а является параметром распределения Пуассона. Обращаем внимание, что возможных значений с.в. Х бесконечно много это все целые неотрицательные числа. Таким образом, д.с.в Х с распределением Пуассона имеет следующий закон распределения:

При вычислении математического ожидания (по их определению для д.с.в. с известным законом распределения) придется теперь считать не конечные суммы, а суммы соответствующих бесконечных рядов (так как таблица закона распределения имеет бесконечно много столбцов). Если же посчитать суммы этих рядов, то окажется, что и математическое ожидание, и дисперсия случайной величины Х с распределением Пуассона совпадает с параметром а этого распределения:

,
.

Найдем моду d (X ) распределенной по Пуассону случайной величины Х . Применим тот же самый прием, что был использован для вычисления моды биномиально распределенной случайной величины. По определению моды d (X )= k , если вероятность
наибольшая среди всех вероятностей р 0 , р 1 , ... . Найдем такое число k (это целое неотрицательное число). При таком k вероятность p k должна быть не меньше соседних с ней вероятностей: p k −1 p k p k +1 . Подставив вместо каждой вероятности соответствующую формулу, получим, что число k должно удовлетворять двойному неравенству:

.

Если расписать формулы для факториалов и провести простые преобразования, можно получить, что левое неравенство дает k ≤ а , а правое k ≥ а −1 . Таким образом, число k удовлетворяет двойному неравенству а −1 ≤ k ≤ а , т.е. принадлежит отрезку [а −1, а ] . Поскольку длина этого отрезка, очевидно, равна 1 , то в него может попасть либо одно, либо 2 целых числа. Если число а целое, то в отрезке [а −1, а ] имеется 2 целых числа, лежащих на концах отрезка. Если же число а не целое, то в этом отрезке есть только одно целое число.

Таким образом, если число а целое, то мода распределенной по Пуассону случайной величины Х принимает 2 соседних значения: d (X )=а−1 и d (X )=а . Если же число а не целое, то мода имеет одно значение d (X )= k , где k есть единственное целое число, удовлетворяющее неравенству а −1 ≤ k ≤ а , т.е. d (X )= [а ] .

Пример . Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится, равно 0.0002 . Какова вероятность, что повредится 18 изделий? Каково среднее значение поврежденных изделий? Каково наивероятнейшее число поврежденных изделий и какова его вероятность?