Методика санитарного обследования участка и отбора проб почвы. Гигиеническая оценка степени загрязнения почвы. Показатели санитарного состояния Количество объединенных проб с одной площадки

При помощи санитарно-гельминтологических исследований обнаруживают яйца и личинки гельминтов в окружающей среде, определяют видовой, количественный состав, их жизнеспособность.

Исследование почвы на яйца гельминтов . Пробы почвы массой 100- 300 г отбирают на глубине 10-60 см вблизи выгребов, мусорных ящиков, на детских площадках и т. д. Заливают их 0,85% водным раствором натрия хлорида или 3% жидкостью Барбагалло и хранят до исследования в бытовом холодильнике. Срок хранения проб - не более 1 мес. Исследуют почву по методу Романенко (1968, 1982): 25 г почвы помещают в центрифужные пробирки объемом 250 мл, приливают 3% раствор натриевого или калиевого основания в соотношении 1:1. Полученную смесь тщательно размешивают, отстаивают в течение 20- 30 мин, после чего центрифугируют 5 мин при 800 об/мин. Надосадочную жидкость удаляют, а осадок промывают 1-5 раз до получения прозрачной надосадочной жидкости. Затем к осадку добавляют 150 мл насыщенного раствора азотнокислого натрия (относительная плотность - 1,38-1,40), тщательно размешивают и центрифугируют, после чего в каждую пробирку добавляют тот же раствор до уровня на 2-3 мм ниже их краев. Пробирки накрывают предметным стеклом так, чтобы оставался зазор шириной не более 10 мм, через который пипеткой добавляют раствор азотнокислого натрия до соприкосновения его с нижней поверхностью предметного стекла. Затем осторожно полностью закрывают предметным стеклом пробирку и после 20-25-минутного отстаивания стекло снимают и переворачивают его нижней поверхностью вверх. На место снятого стекла ставится второе, а при необходимости - и третье. На снятые стекла наносится капля 50% раствора глицерина, накрывается покровным стеклом и микроскопируется под световым микроскопом. Можно исследовать поверхностную пленку непосредственно в центрифужной пробирке под бинокулярным микроскопом МБС (Н. Л. Чекина, 1977).

На личинки гельминтов почву исследуют по методу Бермана .
Исследование воды на яйца гельминтов . Пробу воды отбирают и* водоемов в количестве от 0,5 до 10 л, что зависит от степени ее загрязнения, а из колодцев - от 20 до 25 л. Рекомендуется отбирать воду по« 0,5 - 1 л через каждые 3-5 мни. Содержащиеся в воде яйца концентрируют путем осаждения или фильтрации при помощи мембранных, бумажных или тканевых фильтров. Анализ воды осуществляют по методу Васильковой.

Исследование сточных вод на яйца гельминтов . Пробы сточной воды в условиях малых очистных сооружений отбирают на следующих этапах ее очистки: до поступления на очистные сооружения («сырая» вода), в отстойной части установки, контактном резервуаре, при впадении в биоируд или открытый водоем. На централизованных очистных: сооружениях воду отбирают до поступления на очистные сооружения, после механической очистки, после вторичных отстойников, биологических прудов, полей фильтрации, земледельческих полей орошения. «Сырую» воду исследуют в количестве от 2 до 5 л, а в процессе искусственной биологической очистки и после завершения ее - от 10 до 15 л. Пробы отбирают через каждый час в течение суток (среднесуточная) или с 7 до 20 ч (среднедневная). Исследуют сточную воду по методу Романенко. Сточную воду наливают в стеклянный цилиндр емкостью 1-2 л, добавляют один из коагулянтов (сернокислые алюминий, железо или медь) в дозе 0,3-0,5 г/л и тщательно размешивают. Спустя 40-50 мин осветленную надосадочную жидкость удаляют сифоном, а осадок переносят в центрифужные пробирки и центрифугируют в течение 3 мин при 1000 об/мин. Затем сливают жидкую часть, а к осадку приливают 2-4 мл 1-3% раствора соляной кислоты для растворения хлопьев коагулянта. Полученную смесь центрифугируют, удаляют жидкую часть, а осадок исследуют в дальнейшем по методике Романенко, применяемой для анализа почвы.
И. К. Падченко с соавторами (1982) разработал следующие методики исследования почвы, воды и сточных вод на яйца гельминтов.

Исследование почвы на яйца гельминтов. Отобранную пробу почвы (не менее 300 г) вносят в большую фаянсовую ступку, постепенно добавляют к ней 3% раствор натриевого или калиевого основания и тщательно растирают пестиком до образования гомогенной массы. Полученную смесь выливают в стеклянный цилиндр емкостью 10 л, предварительно наполненный на 3/4 объема водопроводной водой, и отстаивают в течение 5 мин. Всплывшие на поверхности смеси плотные примеси удаляют петлей с сеткой. После 5-минутного отстаивания надосадочную жидкость переливают сифоном в другой большой цилиндр, а образовавшийся осадок переносят в цилиндр емкостью 1 л и повторно отмывают водопроводной водой (не менее 2-3 раз). Образующуюся при этом в малом цилиндре надосадочную жидкость каждый раз переливают сифоном после 5-минутного отстаивания в большой цилиндр, где она смешивается с жидкой частью смеси, полученной после первого 5-минутного отстаивания. К собранной в большом цилиндре жидкости добавляют один из коагулянтов (сернокислый алюминий, сернокислое железо и др.) из расчета 0,3 г на 1 л жидкости и отстаивают ее 1-1,5 ч до полного просветления. Образовавшуюся надосадочную жидкость удаляют сифоном, а к осадку добавляют 1-3% раствор соляной кислоты для растворения хлопьев коагулянта. Полученную смесь отстаивают 18-24 ч, после чего жидкую часть удаляют сифоном, а осадок исследуют на яйца гельминтов. С этой целью осадок тщательно встряхивают и пастеровской пипеткой наносят 1 каплю полученной взвеси на предметное стекло, накрывают покровным стеклом и микроскопируют. Исследуют не менее 1 мл осадка, а затем математически пересчитывают на весь его объем. При незначительном загрязнении проб почвы микроскопическому исследованию подлежит весь осадок.

Исследование сточной воды на яйца гельминтов . Пробы сточной воды, взятые на разных этапах ее очистки на очистных сооружениях, наливают в 10-литровые цилиндры и отстаивают 5 мин. Всплывшие на поверхность жидкости плотные примеси удаляют петлей. После 5-минутного отстаивания надосадочную жидкость переливают сифоном в другой большой цилиндр, а осадок удаляют. Полученную жидкую часть сточной воды смешивают в большом цилиндре с коагулянтом и исследуют в дальнейшем по той же методике, что и почву (на этапе добавления коагулянта).
Пробы воды из водопроводной сети и различных водоемов смешивают в большом цилиндре с коагулянтом и исследуют в дальнейшем по той же методике, что и сточную воду.

Исследование осадков сточных вод на яйца гельминтов . Пробы осадков сточных вод отбирают с 5-10 мест по 100 мл, помещают в стеклянные сосуды объемом 1-2 л. Сухие осадки забирают по той же методике, что и почву. Вносят 100-150 мл осадка в центрифужную пробирку объемом 250 мл, центрифугируют в течение 5 мин при 1000 об/мин. Затем жидкую часть сливают, а к осадку добавляют чистую воду до прежнего объема, тщательно размешивают и центрифугируют. Такую промывку осадка повторяют 2-3 раза, после чего к нему добавляют 3-5 г чистого песка и полученную смесь исследуют по той нее методике, что и почву.
Согласно нашим данным, осадок сточных вод исследуют на яйца гельминтов по следующей методике: пробу осадка в количестве 1 л тщательно растирают пестиком в большой фаянсовой ступке, постепенно добавляя к нему 3% раствор натриевого или калиевого основания, а в дальнейшем исследуют по той же методике, что и почву.

Исследование смывов на яйца гельминтов . Объекты внешней среды, подлежащие исследованию, смывают ватными тампонами, смоченными в 1% растворе натриевого основания или в 20% растворе глицерина. Тампоны смывают в центрифужные пробирки 2-3% раствором гидрокарбоната натрия или 1% раствором натриевого основания и центрифугируют. Полученный осадок микроскопируют.

Определение жизнеспособности яиц и личинок гельминтов . Жизнеспособность яиц и личинок гельминтов по внешнему виду определяют при помощи витальных красителей, методов культивирования и постановки биопроб на лабораторных животных.
Под световым микроскопом у мертвых или дегенерирующих яиц гельминтов оболочки разорваны или деформированы, цитоплазма разрыхлена, мутная. При подогревании зрелых яиц аскариды, власоглава, острицы до температуры +37° С личинки этих гельминтов проявляют активную подвижность.

Культивирование яиц и личинок гельминтов . Незрелые яйца аскариды культивируют при температуре +24...+30°С в чашках Петри (влажная камера) в 3% растворе формалина, приготовленном на 0,85% растворе натрия хлорида, а яйца власоглава - в 3% растворе хлористоводородной кислоты при температуре +30...+35°С, яйца остриц -в 0,85% растворе натрия хлорида при температуре Ч-37°С. Чашки Петри 1-2 раза в неделю открывают для аэрации и увлажняют в них фильтровальную бумагу чистой водой. Развитие яиц контролируют 2 раза в неделю по наличию признаков деления протопласта на отдельные бластомеры. В первые дни яйцо развивается до 16 бластомеров, переходящих в стадию морулы (вторая стадия). Если в течение 2-3 мес у янц не наблюдается признаков развития, их следует считать погибшими.

Биологическое загрязнение почв и грунтов – это накопление в почвах и грунтах возбудителей инфекционных и инвазионных болезней, а также насекомых и клещей, переносчиков возбудителей болезней человека, животных и растений в количествах, представляющих потенциальную опасность для здоровья человека, животных, растений.

В почве встречаются все формы микроорганизмов которые есть на Земле: бактерии, вирусы, актиномицеты, дрожжи, грибы, простейшие, растения. Общее микробное число в 1 г почвы может достигать 1–5 млрд. Наибольшее количество микроорганизмов встречается в самых верхних слоях (1-2-5 см), а в отдельных почвах они распространены до глубины 30-40 см.

Санитарно-бактериологический анализ для оценки санитарного состояния почв включает определение обязательных показателей:

  • Индекс бактерий группы кишечной палочки (индекс БГКП);
  • Индекс энтерококков (фекальные стрептококки);
  • Патогенные бактерии (патогенные энтеробактерии, в т.ч. сальмонеллы, энтеровирусы).

Эти бактерии служат показателями фекальной загрязнённости почвы. Наличие в почве бактерий Streptococcus faecalis (стрептококков фекальных) или Escherihia coli (грамотрицательная кишечная палочка) говорит о свежем фекальном загрязнении. Присутствие таких микроорганизмов, как Clostridium perfringens (возбудитель токсикоинфекций), определяет давнее загрязнение.

Почву оценивают как «чистую» без ограничений по санитарно-бактериологическим показателям при отсутствии патогенных бактерий и индексе санитарно-показательных микроорганизмов до 10 клеток на грамм почвы. О возможности загрязнения почвы сальмонеллами свидетельствует индекс санитарно-показательных организмов (БГКП и энтерококков) 10 и более клеток/г почвы. Концентрация колифага в почве на уровне 10 БОЕ на г и более свидетельствует об инфицировании почвы энтеровирусами.

Яйца геогельминтов сохраняют жизнеспособность в почве от 3 до 10 лет, биогельминтов — до 1 года, цисты кишечных патогенных простейших — от нескольких дней до 3-6 месяцев. Основными «поставщиками» (источниками) яиц гельминтов в окружающую среду являются больные люди, домашние и дикие животные, птицы. Массовое развитие яиц геогельминтов в почве происходит в весенне-летний и осенний сезоны, зависит от микроклиматических условий почвы: температуры, относительной влажности, содержания кислорода, освещенности солнцем и др. В зимний период они не развиваются, но сохраняются жизнеспособными на всех стадиях развития, особенно под снегом, и с наступлением теплых дней продолжают развитие.

Санитарно-энтомологическими показателями являются личинки и куколки синантропных мух. Синантропные мухи (комнатные, домовые, мясные и др.) имеют важное эпидемиологическое значение как механические переносчики возбудителей ряда инфекционных и инвазионных болезней человека (цисты кишечных патогенных простейших, яйца гельминтов и др.).

Критерием оценки санитарно-энтомологического состояния почвы является отсутствие или наличие преимагинальных (личинки и куколки) форм синантропных мух на площадке размером 20х20 см. Наличие личинок и куколок в почве населенных мест является показателем неудовлетворительного санитарного состояния почвы и указывает на плохую очистку территории, неправильное хранение бытовых отходов и их несвоевременное удаление.

В санитарно-эпидемиологическом отношении почвы и грунты населенных мест могут быть разделены на следующие категории по уровню биологического загрязнения: чистая, умеренно опасная, опасная, чрезвычайно опасная . Вы можете заказать анализ почвы и грунтов в нашей лаборатории.

Оценка уровня биологического загрязнения почв и грунтов

Категория загрязнения почв и грунтов Индекс БГКП Индекс энтеро-кокков Патогенные

бактерии, в т.ч. сальмонеллы

Яйца гельминтов, экз/кг Личинки-Л

куколки-К мух, экз. в почве с площадью 20 х 20 см

Чистая 1-10 1-10 0 0
Умеренно опасная 10-100 10-100 1-10 Л до 10 К — отс.
Опасная 100-1000 100-1000 10-100 Л до 100 К до 10
Чрезвычайно опасная 1000 и выше 1000 и выше 100 и выше Л>100 К>10

Составили сотрудники кафедры зоогигиены и зоологии:

профессор, доктор сельскохозяйственных наук Коноплев В. И.

доцент, кандидат ветеринарных наук

доцент, кандидат сельскохозяйственных наук Злыднева Р. М.

Рецензент: профессор

Одобрено методическим советом Ставропольского государственного аграрного университета (протокол № ­­­­____ от __________ 2007 г.).

Введение. 4

Взятие почвы для исследования и подготовка ее для анализа. 5

Определение физических свойств почвы.. 7

Определение механического состава. 7

Определение порозности (скважности) почвы. 8

Определение водопроницаемости (фильтрационной способности) почвы.. 9

Определение водоподъемной способности (капиллярности) почвы.. 9

Определение влагоемкости почвы.. 10

Определение гигроскопической воды в почве. 10

Химический анализ почвы.. 11

Определение азота нитритов. 13

Определение нитратов в почве. 15

Определение хлоридов в почве. 16

Определение окисляемости водной вытяжки из почвы.. 17

Бактериологическое исследование почвы.. 19

Определение общего количества органических веществ в почве. 20

Определение общего числа бактерий в 1 г почвы.. 20

Качественный бактериологический анализ почвы.. 21

Исследование почвы на наличие яиц гельминтов. 21

Реакция на присутствие экскрементов. 23

Реакция на присутствие мочи. 23

Энтомологическое исследование почвы.. 23

Санитарная оценка почвы.. 24

Введение

Почвой называют поверхностный слой коры земного шара, на котором могут расти растения. Изучение состава и свойств почвы необходимо в гигиене.

Почва – естественный приемник и поглотитель различных растительных, животных, хозяйственно-бытовых и промышленных отходов и источник многообразной микрофлоры и микрофауны. Она оказывает большое прямое и косвенное влияние на здоровье и продуктивность животных. Характер воздействия почвы на животных зависит от ее механических, физических, химических, биологических свойств и процессов, протекающих в ней.

Почва и подпочвенный грунт существенно влияют на санитарно-гигиеническое состояние территории ферм и летних лагерей, на химический состав произрастающих кормовых растений и грунтовой воды, на температурно-влажностный режим и долговечность животноводческих помещений. От свойств почвы зависят интенсивность процессов самоочищения – минерализации органических отбросов, попадающих в нее, длительность сохранения возбудителей инфекционных и инвазионных болезней.

Почва, загрязненная патогенными микроорганизмами, выделенными больными животными или человеком, или попавшими туда при захоронении трупов животных, погибших от инфекционных болезней, длительный срок является опасным фактором передачи инфекции. Некоторые возбудители заболеваний сохраняются в почве десятилетиями (например, возбудители сибирской язвы, газовой гангрены, злокачественного отека, столбняка, ботулизма, эмфизематозного карбункула, актиномикоза), другие до нескольких месяцев (возбудители туберкулеза, бруцеллеза, рожи свиней, пастереллеза, пуллороза птиц, мыта лошадей, дерматомикозов и др.).

В почве находятся также возбудители геогельминтозов: яйца аскарид, зародыши возбудителей диктиокаулеза, гемонхоза, мониезиоза, амидостоматоза и др., а также промежуточные хозяева возбудителей фасциолеза (моллюск), метастронгилидоза (дождевые черви) и др.

Характер и объем лабораторных исследований почвы зависят от целей и задач, поставленных перед зооветеринарными специалистами. Они могут быть следующими:

1) определение степени загрязнения почвы вокруг сельскохозяйственных предприятий, комплексов и ферм, сельскохозяйственных угодий органическими и химическими веществами и эффективности мероприятий по санитарной охране почвы;

2) установление роли почвы в возникновении эпизоотий кишечных инфекций с передачей возбудителей через грунтовые воды, выращиваемые растения, через прямой контакт животных с почвой;

3) выявление роли почвы в инвазированности животных геогельминтами;

4) определение пригодности земельных участков для сооружения полей фильтрации, орошения и устройства скотомогильников;

5) оценка эффективности используемых методов обеззараживания навоза и навозных стоков.

Проводят также и узко специальные исследования для выяснения следующих вопросов: роль почвы как промежуточной среды в развитии гельминтов, личиночных стадий мух, выживаемости патогенных микроорганизмов, способность к самоочищению и т. п.

Взятие почвы для исследования и подготовка ее для анализа



Для правильного решения вопроса о характере и свойствах почвы большое значение имеет отбор проб для лабораторного исследования. Для физико-химического исследования почвы пробы берут буром Некрасова, буром Френкеля, щупом Рождественского (рис. 1) или лопатой.

Рис. 1. Приспособления для взятия проб почвы: а – бур Некрасова; б – бур Френкеля; в – щуп Рождественского.

На участках с видимым источником загрязнения выделяют две площадки размером 25 м2 каждая – одну вблизи источника загрязнения и вторую вдали. На земельных участках, где нет видимых источников загрязнения, для отбора проб отводится одна площадка. Степень загрязнения почвы устанавливают обычно анализом среднего образца, составленных из нескольких проб. Пробы отбирают из 3-5 (в зависимости от рельефа местности) точек, расположенных по диагонали площадок. Отбор проб следует производить в сухую погоду. Образцы почвы для химического и санитарного анализа отбирают в чистые стеклянные банки. Вес образца должен составлять 1-2 кг. Образцы почвы берут с поверхности и с разных глубин (например, 2, 25, 50, 100 см и более).

Пробы почвы для бактериологического исследования обычно берут при помощи бура Некрасова (рис. 1а ). При помощи этого бура можно брать пробы почвы с глубины до 3 м. Перед каждым бурением рабочую часть бура обжигают.

Образцы, доставленные в лабораторию, должны быть немедленно доведены до воздушно-сухого состояния. Хранение сырых образцов не допускается, т. к. под влиянием микробиологических процессов изменяются свойства почвы. Большинство анализов проводят с воздушно-сухими образцами, растертыми и просеянными через сито с отверстиями в 1 мм. Некоторые виды анализов, например определение нитратов, проводят на свежих образцах. В этом случае образец рассыпают на бумаге, отбирают корни и каменистые частицы пинцетом и после тщательного перемешивания немедленно берут навеску на определение влажности и на соответствующий анализ.

Для просушки образец рассыпают тонким слоем на большом листе плотной бумаги, пинцетом удаляют корни и другие растительные остатки. Мелкие корешки можно отбирать стеклянной палочкой, наэлектризованной кусочком шерстяной ткани; для этого палочкой многократно проводят над тонким слоем почвы на высоте 3-5 см. Это делать надо осторожно, т. к. на слишком близком расстоянии к палочке могут притягиваться и прилипать не только корешки, но и мелкие частицы почвы. Затем образец почвы, прикрыв сверху другим листом бумаги, оставляют на 2-3 дня. Помещение для сушки образцов должно быть сухим и защищенным от доступа аммиака, паров кислот и других газов. Высушенный образец делят по диагоналям на четыре части. Две противоположные части берут для растирания, а две другие сохраняют в неизменном состоянии. Почву растирают в ступке пестиком и просеивают через сито с отверстиями в 1 мм. Подготовленную таким образом пробу следует хранить в маленьком пакете из плотной бумаги или в баночке с притертой пробкой.

Определение физических свойств почвы

К физическим свойствам почвы относят ее механический состав, порозность и влажностные свойства.

Механический состав является существенным морфологическим признаком, который дает возможность судить о степени проницаемости почвы для воздуха, что важно в санитарном отношении. В крупнозернистых почвах процессы самоочищения протекают более энергично вследствие более обильного притока кислорода, необходимого для окисления органических веществ, содержащихся в почве.

Определение объема пор в почве имеет большое санитарное значение. Порозность или скважность почвы определяется общим объемом пор внутри почвенных частиц и между ними. Суммарная порозность в структурных почвах примерно в 1,5 раза больше, чем в бесструктурных. В мелкоструктурных (глинистых, торфяных) почвах, имеющих большую порозность, водо - и воздухопроницаемость меньше, чем в крупнозернистых (гравелистых, песчаных) почвах с меньшей порозностью. В крупнозернистых почвах, благодаря крупным порам легче фильтруется и проникает в грунт атмосферная вода и кислород атмосферного воздуха. Эти обстоятельства способствуют более интенсивному течению аэробных микробиологических процессов и разложению органических отбросов.

Влажностные свойства почвы это ее водопроницаемость (фильтрационная способность), водоподъемная способность (капиллярность), влагоемкость и гигроскопичность. От влажности почвы зависят ее тепловые свойства. Чем больше влажность почвы, тем больше ее теплопроводность и теплоемкость. Влажная почва более холодная, и животные, находящиеся на ней, теряют много тепла. Тепловые свойства почвы, в свою очередь, оказывают влияние на микробиологические процессы и разложение органических веществ в ней.

Определение механического состава

Все почвенные частицы по размеру делятся на 2 большие группы: физический песок (размер частиц более 0,01 мм) и физическая глина (менее 0,01 мм). По соотношению этих частиц все почвы делятся на 4 большие группы: песчаный, супесчаные, суглинистые и глинистые.

В поле механический состав почвы определяют органолептическим методом . Для этого берут кусочек почвы, увлажняют его до состояния теста и растирают на ладони, стараясь скатать шарик, затем раскатать в шнур и свернуть его в колечко (табл. 1).

При этом если почва глинистая, при скатывании образуется шнур, который при свертывании в кольцо не трескается; суглинистая почва – скатанный шнур при свертывании в кольцо ломается; супесчаная почва рассыпается, шарик скатать удается, а вытянуть его в шнур нельзя; если почва песчаная – шарик скатать не удается. Кроме того, при растирании на пальцах увлажненной почвы ощущается слабая липкость у легкосуглинистых, значительная (средняя) прилипаемость к пальцам – у суглинистых и сильная липкость – у тяжелоглинистых и глинистых по механическому составу почвы. Почти не обладают липкостью супесчаные почвы; песчаные – совсем не липнут.

Таблица 1

Органолептическое определение механического состава почвы

Тип почвы

Пластичность

Липкость

физического песка

физической глины

Песчаная

не менее 80%

не более 10%

Рассыпается

Не липнет

Супесчаная

Можно скатать в шар

Суглинистая

Скатывается в шнур

Значительная

Глинистая

не менее 80%

При скатывании образует шнур, который можно свернуть в кольцо

Лабораторное исследование механического состава почвы заключается в сортировке почвенной массы на отдельные группы, отличающихся друг от друга величиной почвенных частиц. Количественное содержание этих групп, выраженное в процентах к взятому весу почвы, характеризует механический состав исследуемой почвы.

Для сортировки почвенных частиц по величине применяют набор металлических сит с отверстиями 10, 5, 3, 2, 1, 0,5 и 0,25 мм в диаметре, которые при работе соединяют друг с другом в последовательном порядке: сита с более крупными отверстиями помещают вверху, с мелкими – внизу.

В верхнее сито насыпают 200-300 г воздушно-сухой почвы и, сотрясая набор сит, просеивают через них взятую навеску почвы. Почвенные частицы распределяются по отдельным ситам соответственно их величине и диаметру отверстий сит.

На ситах №1, 2 и 3 собираются частицы почвы размером более 3 мм, которые по классификации, представляют собой камни и гравий; на ситах № 4 и 5 собираются частицы почвы размером 1-3 мм, называемые крупным песком; на ситах №6 и 7 собирается средний песок с диаметром частиц 0,25-1,0 мм и на дне набора собираются мелкий песок, пыль, ил и глинистые частицы.

По окончании просеивания содержимое каждого сита и дна прибора взвешивают и на основании этого вычисляют количество каждой группы почвенных частиц в процентах.

Определение порозности (скважности) почвы.

Для определения объема пор в пробе почвы берут градуированный цилиндр, наливают в него 50 мл воды и высыпают 50 см3 исследуемой почвы. Смешивают почвы с водой и отмечают на цилиндре общий объем, который будет меньше 100 см3, поскольку поры между частицами почвы будут заполнены водой. Число, на которое будет меньше этот объем, и укажет объем пор во взятой пробе почвы. Объем пор вычисляют в процентах.

Пример. После смешивания 50 мл воды и 50 см3 почвы их общий объем составляет 85 см3, следовательно, объем пор почвы равен 15 см3 (100-85=15). Переводим в проценты:

Определение водопроницаемости (фильтрационной способности) почвы

Скорость просачивания воды через почвы различных типов зависит в основном от их структуры. Водопроницаемость имеет большое санитарное и гигиеническое значение, т. к. она определяет водно-воздушный режим почвы. Водопроницаемость больше у почв структурных, чем у бесструктурных. Мелкозернистые (глинистые, суглинистые) почвы самоочищаются медленнее, чем крупнозернистые (супесчаная, песчаная). Они малопригодны для сооружения на них полей фильтрации и орошения, предназначенных для обезвреживания сточных вод. Сырые почвы неблагоприятны для строительства жилых , животноводческих и хозяйственных зданий.

Для определения водопроницаемости сухой измельченной почвы берут стеклянную трубку диаметром 3-4 см и длиной 25-30 см. Отмерив от нижнего конца трубки 20 и 24, отмечают эти уровни на стекле (восковым карандашом или резиновыми колечками). Нижний конец трубки обвязывают тонким полотном и при встряхивании наполняют исследуемой почвой до нижней черты (20 см). Укрепив трубку вертикально в штативе, подставляют под нее мерный цилиндр с воронкой. Мерный цилиндр должен быть одинакового диаметра с трубкой. На цилиндре отмеряют снизу 4 см и делают метку. Зафиксировав время, осторожно наливают в трубку на почву слой воды высотой 4 см, все время поддерживая этот уровень над почвой. Водопроницаемость выражается двумя показателями: временем, в течение которого вода пройдет через слой 20 см и временем, которое потребуется для накопления в цилиндре слоя воды высотой 4 см.

Определение водоподъемной способности (капиллярности) почвы

Капиллярность или водоподъемность (водоподъемная способность) почвы зависит от ее механического состава, т. е. чем меньше частицы почвы, тем выше капиллярный подъем влаги. Высокая капиллярность нередко служит основной причиной сырости помещений, если не приняты соответствующие меры (гидроизоляция стен, например).

Для определения водоподъемной способности почвы в штативе устанавливают ряд (в зависимости от количества проб почвы) высоких (1 м и более) стеклянных трубок диаметром 2,5-3,0 см с сантиметровыми делениями. Нижние концы трубок погружают в стаканы с водой на глубину 0,5 см. В зависимости от величины частиц, а отсюда и величины капилляров в почве, вода с неодинаковой скоростью будет подниматься вверх. По изменению окраски увлажненной почвы в трубках следят за скоростью и высотой поднявшейся воды, отмечая ее уровень через 5, 10, 15, 30 и 60 мин и далее через каждый час до прекращения подъема уровня. В итоге на примере 3-5 образцов почвы получаются результаты водоподъемной способности, указывающие на неодинаковую их скважность, разный размер частиц.

Определение влагоемкости почвы

Влагоемкость почвы – это способность ее впитывать и удерживать в себе определенное количество воды. При большой влагоемкости уменьшается ее воздухо - и водопроницаемость. На таких участках почвы нередко наблюдается отсырение полов и стен возведенных построек, ограждающих конструкций помещений, сдерживается разложение органических веществ.

Для определения влагоемкости берут стеклянный цилиндр с сетчатым дном и насыпают в него 100 г воздушно-сухой почвы. Цилиндр с почвой взвешивают и затем погружают его в воду, наблюдают до появления воды в верхнем слое почвы. Таким образом, часть воды впиталась почвой, находящейся в цилиндре. Затем цилиндр вынимают и дают полностью стечь воде, которая не впиталась, и снова взвешивают. После второго взвешивания масса цилиндра с почвой, впитавшей воду, стала больше. Разница между первым и вторым взвешиванием указывает на массу влаги, удерживаемой образцом исследуемой почвы. Окончательный результат выражают в процентах.

Определение гигроскопической воды в почве

Почва обладает гигроскопичностью, т. е. способностью поглощать водяные пары из соприкасающегося с ней воздуха. Вода, поглощенная из воздуха, называется гигроскопической.

Гигроскопичность почвы обусловливается суммарной поверхностью составляющих ее частиц. Чем больше в почве мельчайших частиц, тем больше их общая поверхность и тем выше гигроскопичность почвы. Кроме того, гигроскопичность воды зависит от температуры и относительной влажности воздуха. При определении количества тех или иных составных частей почвы (механического состава, гумуса, азота и др.) необходимо учитывать количество гигроскопической воды в ней и все вычисления производить на сухую почву, т. е. почву, не содержащую гигроскопической воды.

Наиболее простым и распространенным способом определения гигроскопической воды является высушивание почвы в сушильной камере (шкафу) при температуре 100-150°С.

Во взвешенный сушильный стаканчик с притертой пробкой (крышкой) берут на аналитических весах навеску воздушно-сухой почвы около 5 г. Стаканчик с почвой помещают в сушильный шкаф и, открыв крышку, просушивают почву 5 ч при температуре 105°С. Затем стаканчик с почвой вынимают из шкафа, закрывают крышкой, охлаждают в эксикаторе и взвешивают. Количество гигроскопической воды вычисляют в процентах по формуле:

,

где А – количество гигроскопической воды во взятой для анализа навеске, г;

В – навеска почвы, г.

Для определения влажности почвы на пастбище (без взятия почвенных образцов) применяют прибор «Днестр-1».

Химический анализ почвы

Определение химических ингредиентов производится в водной вытяжке из почвы. Для этого в фарфоровой чашке отвешивают 100 г воздушно-сухой почвы, просеянной через сито с отверстиями в 1 мм. Навеску осторожно пересыпают через воронку в стеклянную банку с притертой пробкой. В банку приливают 500 мл дистиллированной воды, все содержимое банки встряхивают в течение 3 минут и немедленно фильтруют через плотный складчатый фильтр, перенося на него всю почву. Для фильтрации употребляются воронки диаметром 12-15 см с широкой и короткой трубкой. Первые мутные порции фильтрата переносят обратно на фильтр; фильтрат собирают в колбу вместимостью 500-700 мл. Во время фильтрации записывают скорость фильтрации, цвет и прозрачность вытяжки.

Анализ водной вытяжки необходимо производить тотчас после окончания фильтрации, т. к. водные вытяжки через 1-2 дня после приготовления легко загнивают.

В водной вытяжке определяют наличие аммиака, хлоридов, нитритов, нитратов, являющихся одними из основных показателей степени и давности загрязнения почвы органическими веществами. Эти показатели могут быть определены качественно и количественно. Для количественного их определения необходимо изготовить колориметры – ряд пробирок с известным количеством определяемых веществ. Интенсивность окраски каждой пробирки будет зависеть от количества присутствующего вещества. Сравнивая интенсивность окраски жидкости в исследуемой пробирке с таковой колориметра, рассчитывают количество искомого вещества.

Для приготовления колориметра берут по 10 пробирок, тщательно вымытых, одинакового диаметра, из бесцветного стекла.

Определение аммиака (азота аммонийных солей)

Принцип метода основан на способности аммиачных соединений давать с реактивом Несслера йодистый меркураммоний (NH2×Hg2IO). При этом идет следующая реакция:

NH3 + 2 (HgI2×2KI) + 3KOH = NH2Hg2IO + 7KI + 2H2O

Для качественного определения в пробирку наливают 10 мл водной вытяжки, добавляют 2-3 капли реактива Несслера (раствор двойной соли йодистой ртути и йодистого калия в едком кали). При наличии в почве аммиака или его солей раствор окрашивается в желтый (оранжевый) цвет. По интенсивности окрашивания содержимого пробирки можно дать приблизительную количественную характеристику (табл. 1).

Таблица 1

Ориентировочное количество аммиака в почве

Окрашивание при
рассматривании сбоку

Чрезвычайно слабо-желтоватое

Чрезвычайно слабо-желтоватое

Слабо-желтоватое

Очень слабо-желтоватое

Желтоватое

Светло-желтоватое

Интенсивно желто-буроватое

Мутновато–резко-желтое

Бурое, раствор мутный

Интенсивно-бурое, раствор мутный

Для точного количественного определения необходимо изготовить колориметр из стандартного раствора хлористого аммония. Берут навеску 3,147 г NH4Cl, высушенного при 90°С, и растворяют в 1 л безаммиачной дистиллированной воды (в 1 мл этого раствора будет содержаться 1 мг аммиака). Затем 50 мл этого раствора доводят до 1000 мл водой. В 1 мл этого титрованного раствора NH4Cl содержится 0,05 мг аммиака.

В первую пробирку колориметра наливают 0,1 мл последнего раствора хлористого аммония. Во вторую – 0,2 мл этого раствора, в третью – 0,3 мл, в четвертую – 0,4 мл и т. д., увеличивая объем раствора на 0,1 мл в каждой пробирке до десятой включительно. Затем объем в каждой пробирке довести дистиллированной водой до 10 мл, добавить 2-3 капли реактива Несслера, осторожно перемешать и отстаивать 5-10 минут. Цвет жидкости в каждой пробирке будет равномерно возрастать.

Ход анализа. В пробирку с 10 мл исследуемой водной вытяжки добавляют 2-3 капли реактива Несслера и через 5-10 минут сравнивают цвет жидкости в этой пробирке с пробирками колориметра. Цвет исследуемой вытяжки должен быть ближе к цвету жидкости какой-либо пробирки колориметра.

Пример расчета. Цвет жидкости в пробирке с исследуемой водной вытяжкой совпал с цветом в третьей пробирке колориметра. Значит, количество аммиака в исследуемой пробе и в третьей пробирке одинаковое, т. е. 0,015 (0,3´0,05 = 0,015). Таким образом, в 10 мл исследуемой водной вытяжки почвы содержится 0,015 мг аммиака, а в 1 л его будет 1,5 мг аммиака.

Определение азота нитритов

Качественное определение основано на способности азотистой кислоты разлагать йодистоводородную кислоту с выделением свободного йода, который окрашивает крахмальный клейстер в синий цвет. (Этот способ надежен при исследовании почвы, не содержащей солей закиси железа и слабо загрязненной.)

В пробирку наливают 10 мл исследуемой водной вытяжки, прибавляют 2 капли 25% серной кислоты, 3 капли 3% раствора йодистого калия в дистиллированной воде, 3 капли 1% крахмального клейстера. Пробирку встряхивают. При наличии в почве нитритов жидкость окрашивается в синий цвет.

Количественный способ (Грисса) основан на способности азота нитритов образовывать с ароматическими аминами в кислой среде диазосоединения, которые в результате реакции с солями ароматических аминов (альфа-нафтиламином) окрашивают жидкость от розового до интенсивно-красного цвета, что зависит от количества нитритов. Поэтому и принцип определения нитритов основан на реакции между нитритами и реактивом Грисса. Для приготовления реактива Грисса необходимы следующие раствора:

1. 12% раствор сульфаниловой кислоты.

2. Раствор сульфаниловой кислоты – 0,5 г. сульфаниловой кислоты разводят в 150 мл 12% раствора уксусной кислоты.

3. Раствор альфа – нафтиламина и 20 мл дистиллированной воды кипятят 5 мин. Затем жидкость фильтруют через хорошо промытый дистиллированной водой фильтр в колбу, куда предварительно было помещено 150 мл 12% раствора уксусной кислоты. Смешивают 50 мл раствора сульфаниловой кислоты и 50 мл раствора альфа – нафтиламина. Хранить в склянке тёмного цвета.

Для приготовления стандартного раствора 69,01 г. NaNO2 вносят в мерную колбу, и объём доводят дистиллированной водой до 1000 мл. Из этого основного раствора готовят рабочий стандартный раствор азотнокислого натрия, который в 1 мл содержит 0,001 мг азота нитритов. Для этого 1 мл основного раствора доводят дистиллированной водой до 1000 мл.

Ход анализа. В пробирку наливают 10 мл исследуемой водной вытяжки и прибавляют 1 мл реактива Грисса. Пробирку нагревают в течение 5-10 минут в водяной бане при температуре 70-80°; появление розовой окраски различной интенсивности свидетельствует о наличии в ней нитритов. По интенсивности окрашивания содержимого пробирки можно приблизительно определить количество нитритов в ней (таблица 2).

Таблица 2

Определение азота нитритов по интенсивности окраски

Окрашивание при рассматривании сбоку

Окрашивание при рассматривании сверху

Азот нитритов, мг/л

Менее 0, 001

Едва заметное розовое

Чрезвычайно слабо-розовое

Очень слабо-розовое

Слабо-розовое

Слабо-розовое

Светло-розовое

Сильно-розовое

Сильно-розовое

Ярко-красное

Для количественного колориметрического метода определения нитритов в ряд пробирок вносят рабочий стандартный раствор азотнокислого натрия, 1 мл которого содержит 0,001 мг азота нитритов. В первую пробирку наливают 0,1 мл, во вторую – 0,2 мл, в третью – 0,3 мл и т. д., увеличивая объем жидкости в каждой пробирке на 0, 1 мл. Затем во все пробирки вносят дистиллированную воду до получения объёма, равного 10 мл, добавляют по 1 мл реактива Грисса и нагревают в течение 15 минут в водяной бане при температуре 70-80°С. Жидкость во всех пробирках приобретает розовую окраску различной интенсивности.

Ход анализа.

В пробирку с 10 мл водной вытяжки добавляют 1 мл реактива Грисса, нагревают в водяной бане в течение 15 мин и сравнивают её цвет с цветом пробирок колориметра. В зависимости от того, с какой пробиркой колориметра совпал цвет исследуемой водной вытяжки, производят вычисления количества нитритов.

Пример. Цвет исследуемой вытяжки совпал с цветом в пятой пробирке колориметра. В пятой пробирке было помещено 0,5 мл рабочего раствора, что соответствует 0,0005 мг/л (0,5´0,001=0,0005). Следовательно, в 10 мл исследуемой водной вытяжки из почвы содержится 0,005 мг азота нитритов. Пересчитываем количество его на 1 кг исследуемой почвы.

Определение нитратов в почве

Качественное определение нитратов можно проводить двумя способами.

1. Реакция с дифениламином (HN(C6H5)2). Применима она в случае, когда в почве отсутствуют нитриты. В фарфоровую чашечку наливают 1 мл исследуемой водной вытяжки, добавляют кристаллик дифениламина и 2 мл концентрированной серной кислоты. При наличии нитратов жидкость в пробирке (чашечке) окрашивается в темно-синий цвет вследствие образования дифенилнитрозоамина.

2. Реакция с бруцином (С23Н26О24). В фарфоровую чашечку наливают 1 мл исследуемой водной вытяжки, добавляют 1 кристаллик бруцина и осторожно приливают 2 мл концентрированной серной кислоты. При наличии в исследуемой почве азотной кислоты, жидкость окрашивается в розовый цвет, переходящий в желтый.

Количественное определение основано на способности азотной кислоты и её солей давать с сульфофенолом желтое окрашивание.

Для приготовления сульфофенолового раствора 3 г бесцветной кристаллической карболовой кислоты и 37 г чистой серной кислоты наливают в колбу с длинной узкой шейкой, закрывают неплотно стеклянной пробкой и 6 ч нагревают на водяной бане. Реактив сливают во флакон из темного стекла.

Для приготовления стандартного раствора 1,872 г азотнокислого калия (KNO3) растворяют в 1 л дистиллированной воды, 1 мл этого раствора соответствует 1 мг азота.

Для приготовления колориметра 10 мл стандартного раствора азотнокислого калия, 1 мл которого соответствует 1 г азотного ангидрида, вливают в выпаривательную чашечку и выпаривают. К остывшему сухому остатку прибавляют 10-15 капель сульфофенола, перемешивают стеклянной палочкой и оставляют на 5 минут. Добавляют 5 мл дистиллированной воды и 10 мл 25% раствора аммиака, размешивают и выливают в мерный цилиндр. Чашечку ополаскивают водой и выливают в тот же цилиндр. Цилиндр доливают дистиллированной водой до метки 100 мл. Получается прозрачный раствор желтого цвета, идущий для изготовления колориметра, в 1 мл которого содержится 0,1 мг азотного ангидрида. Раствор разливают в пять пробирок: в первую пробирку наливают 1 мл, во вторую – 2,5 мл, в третью – 5,0, в четвертую – 7,5 мл и в пятую 10 мл. Все пробирки доливают дистиллированной водой до метки 10 мл. Следовательно, в первой пробирке будет содержаться 0,1 мг азотного ангидрида, во второй – 0,25, в третьей – 0,5, в четвертой – 0,7 и в пятой – 1 мг.

Исследуемую водную вытяжку, давшую положительную качественную пробу, обрабатывают так же, как и готовят колориметр, т. е. 10 мл исследуемой водной вытяжки выпаривают в выпаривательной чашке, охлаждают и сухой остаток обрабатывают раствором сульфофенола (10-15 капель) и оставляют на 5 минут. Затем добавляют 5 мл дистиллированной воды и 10 мл 25% раствора аммиака, размешивают и выливают в мерный цилиндр. Чашечку ополаскивают водой и выливают в мерный цилиндр (тот же). Цилиндр доливают дистиллированной водой до 100 мл. Получится прозрачный раствор желтого цвета. 10 мл этого раствора наливают в пробирку и сравнивают с цветом пробирок колориметра.

Пример. Проба с вытяжкой совпала с четвертой пробиркой колориметра, где понадобится 0,75 г нитратов. Следовательно, в 10 мл вытяжки содержится 0,75 мг нитратов, в литре – 75 мг (0,75´100).

Определение хлоридов в почве

Качественное определение основано на реакции азотнокислого серебра с хлоридами в водной вытяжке. Наличие хлоридов определяется по появлению в ней белого осадка хлористого серебра.

Реактивы:

1) титрованный раствор азотнокислого серебра. Растворить в 1 литре дистиллированной воды 4,79 г AgNO3; 1 мл такого раствора может осадить 1 мг хлора;

2) индикатор – 5% раствор хромовокислого калия (K2Cr2O7), который не должен иметь примесей хлористых соединений;

3) титрованный раствор хлористого натрия. Для его приготовления берут навеску 1, 648 г чистого хлористого натрия на 1000 мл дистиллированной воды. Для титрования наливают в колбу 10 мл раствора хлористого натрия и 40 мл дистиллированной воды, прибавляют 2-3 капли индикатора. Из другой бюретки постепенно приливают в колбу раствор азотнокислого серебра, взбалтывают до тех пор, пока желтый цвет титруемого раствора не перейдёт в оранжево-бурый. Например, на 10 мл раствора хлористого натрия израсходовано 10,5 мл азотнокислого серебра. Отсюда, титр последнего будет равен 10,5 мл, т. е. это количество может осадить 10 мг хлора.

Ход анализа. В пробирку наливают 10-15 мл исследуемой водной вытяжки и 2-3 капли раствора азотнокислого серебра. Образование белого хлопьевидного осадка указывает на наличие хлоридов.

Количественное определение также основано на осаждении хлоридов раствором азотнокислого серебра.

В две колбы наливают по 100 мл исследуемой водной вытяжки, прибавляют по 15 капель индикатора – хромовокислого калия. Водную вытяжку в одной из колб титруют раствором азотнокислого серебра при постоянном взбалтывании до перехода желтого цвета в оранжево-бурый.

При титровании вторую колбу ставят рядом с титруемой и постоянно сравнивают окраску на белом фоне. Содержание хлора в 1 л водной вытяжки определяют (в мг/л) по формуле:

где Х – количество хлора, мг/л;

А – количество раствора азотнокислого серебра, израсходованного при титровании 100 мл исследуемой вытяжки, мл;

10 – множитель для приведения объёма к 1 л.

Определение окисляемости водной вытяжки из почвы

Под окисляемостью следует понимать способность находящихся в водной вытяжке органических веществ окисляться атомарным кислородом. Величину окисляемости выражают количеством кислорода (мг), необходимого для окисления органических веществ, содержащихся в 1 кг почвы. Обычно окисляемость определяют в кислой среде, но при содержании в воде хлоридов более 300 мг/л и очень загрязненной, исследования проводят в щелочной среде.

1. Перманганатный метод (по Куббелю).

Основан на способности перманганата калия в кислой среде выделять атомарный кислород. По количеству затраченного кислорода судят об окисляемости водной вытяжки.

Реактивы:

1) 0,01 н. раствор перманганата калия;

2) 0,01 н. раствор щавелевой кислоты;

3) 25% раствор серной кислоты (1 часть концентрированной серной кислоты и 3 части дистиллированной воды).

В коническую колбу ёмкостью 250 мл помещают несколько стеклянных шариков и наливают 100 мл водной вытяжки, добавляют 5 мл серной кислоты и 10 мл 0,01 н. раствора перманганата калия. Смесь быстро нагревают до кипения (за 5 мин.) и выдерживают на слабом огне 10 минут. После этого колбу снимают (раствор должен иметь розовый цвет) и к горячему раствору добавляют 10 мл 0,01 н. раствора щавелевой кислоты. Обесцвеченный горячий раствор (при 80°С) титруют 0,01 н. раствором перманганата калия до устойчивого слабо-розового окрашивания.

Если исследуемая жидкость во время кипячения обесцветится или станет светло-бурой, то дальнейшее исследование прекращают и раствор выливают. Берут новую порцию воды и предварительно её разбавляют дистиллированной водой точно в 2 или 5 раз и повторяют анализы, как было указано выше.

Окисляемость вычисляют по формуле:

,

где Х – окисляемость в мг кислорода на 1 кг почвы;

а – количество KMnO4, прилитой до кипячения, мл;

в – количество KMnO4, израсходованное на титрование, мл;

К – поправочный коэффициент к нормальности KMnO4;

10 – количество KMnO4, израсходованное на окисление щавелевой кислоты;

0,08 – количество кислорода, соответствующее 1 мл 0,01 н. раствора KMnO4;

1000 – перевод на 1 л водной вытяжки;

С – объём водной вытяжки, взятой для анализа.

Величина К, т. е. нормальность раствора перманганата калия, устанавливают следующим образом. В колбу ёмкостью 250 мл наливают 100 мл дистиллированной воды, добавляют 5 мл 25% серной кислоты и 10 мл 0,01 н. раствора перманганата калия. Жидкость нагревают и кипятят в течение 10 мин на малом огне. Затем в горячую жидкость добавляют 10 мл 0,01 н. раствора щавелевой кислоты, в результате чего наступает обесцвечивание. После этого её титруют в горячем состоянии 0,01 н. раствора перманганата калия до бледно-розового окрашивания.

Поправочный коэффициент (К) вычисляют по формуле:

где 10 – количество 0,01 раствора щавелевой кислоты, мл;

в – количество 0,01 н. раствора перманганата калия, прилитое до кипячения и пошедшее на титрование, мл.

В связи с тем, что в водной вытяжке из почвы могут окисляться некоторые минеральные (закисные) соединения, как железо, марганец нитриты, сероводород, то при значительном их содержании необходимо учитывать их влияние на величину окисляемости (опыт проводят без подогревания).

2. Определение окисляемости в щелочной среде (по Шульцу)

Этот метод применим для определения окисляемости водной вытяжки почвы, загрязненной хлоридами.

Реактивы:

1) 0,01 н. раствор перманганата калия, содержащий в 1 л дистиллированной воды 0,316 г препарата;

2) 50% раствор едкого натра;

3) 0,01 н. раствор щавелевой кислоты в 1 л дистиллированной воды 0,63 г вещества;

4) 25% раствор серной кислоты (1 часть концентрированной серной кислоты и 3 части воды).

В коническую колбу наливают 100 мл испытуемой водной вытяжки, добавляют 0,5 мл 50% раствора едкого натра и 10 мл 0,01 н. раствора перманганата калия. Жидкость нагревают и кипятят 10 мин. от начала появления первых пузырьков, охлаждают до 50-60°, добавляют 5 мл раствора серной кислоты, 10 мл 0,01 н. раствора щавелевой кислоты (жидкость должна обесцвечиваться; если же этого не происходит, то ещё добавляют несколько миллилитров щавелевой кислоты) и титруют 0,01 н. раствором перманганата калия до появления слабо-розового окрашивания, не исчезающего в течение 3-5 минут. Расчет проводят по той же формуле, что и по методике Куббеля и результат выражают в мл О2/л.

3. Экспресс-метод определения окисляемости

В пробирку наливают 10 мл исследуемой водной вытяжки и добавляют 0, 5 мл раствора (25%) серной кислоты и 1 мл 0,01 н. раствора перманганата калия. Смесь тщательно перемешивают и оставляют в покое на 20 минут при температуре 20° и на 40 минут при температуре 10-20°. После этого раствор рассматривают сбоку и сверху и по окраске определяют окисляемость. Зависит она от цветности: так, яркий лилово-розовый цвет соответствует 1, лилово-розовый – 2, слабый лилово-розовый – 4, бледно-лилово-розовый – 6, бледно-розовый – 8, розово-желтый – 12, желтый – 16 и выше мг кислорода, необходимого на окисление органических веществ в литре водной вытяжки.

Бактериологическое исследование почвы

Для бактериологического анализа берут по 200-300 г почвы в каждой точке стерильными инструментами в стерильные банки и составляют из них среднюю пробу. Такие пробы отбирают обычно с глубины 25 см. При определении влияния загрязненной почвы на подземные воды и открытые водоёмы пробы следует брать на глубине 0,75-2,0 м, а на скотомогильниках – с глубины 25 см и ниже глубины захоронения трупов. Взятые пробы должны быть немедленно отправлены в лабораторию.

При бактериологическом исследовании обязательно определяется титр кишечной палочки, которая сохраняется в почве в течение нескольких месяцев и свидетельствует об относительно свежем загрязнении. Если же в почве она не обнаружена, но есть Clostridium perfringens, значит, почва загрязнена фекалиями давно.

Определение общего количества органических веществ в почве

Загрязненные почвы обычно содержат значительные количества органических веществ и являются поэтому более благоприятной средой для развития микроорганизмов.

Прямых способов определения органических веществ в почве нет. Об их содержании судят по количеству органического азота, органического углерода и по отношению количества почвенного белкового азота к количеству органического азота (санитарное число). Обыкновенно при ориентировочных санитарных анализах производят определение общего количества органических веществ путем прокаливания взятой навески почвы; при этой операции органические вещества сгорают и потеря в весе дает некоторое представление о количестве органических веществ в исследуемой почве.

В прокаленную фарфоровую чашку с известным весом отвешивают 5 г почвы, высушенной при 105°С, и прокаливают до полного сгорания органических веществ, показателем чего служит равномерное окрашивание почвы в темный цвет. Прокаливание следует вести осторожно, время от времени перемешивая почву стеклянной палочкой.

По окончании сжигания чашку охлаждают в эксикаторе, прибавляют в нее несколько капель концентрированного раствора углекислого аммония, подсушивают на водяной бане, слегка прокаливают, охлаждают и взвешивают.

При первом взвешивании почву точно взвесить не удается, т. к. после прокаливания она слишком гигроскопична и жадно впитывает влагу из воздуха. Поэтому вторично прокаливают почву в течение 20-30 минут, охлаждают в эксикаторе и быстро взвешивают, предварительно поставив на весы полученный при первом взвешивании приблизительный вес. Разница между двумя взвешиваниями не должна превышать 0,5 мг.

Найденная величина от прокаливания 5 г почвы, выраженная в процентах, указывает (приближенно) на количество органических веществ в почве.

Определение общего числа бактерий в 1 г почвы

Из взятой пробы отвешивают 5-10 г почвы, высыпают её в стерильную чашку со 100 мл стерильной воды и растирают в течение 5 минут пестиком. После этого содержимое чашки переводят в склянку, взбалтывают 10 минут, дают отстояться в течение 2 минут (для глинистых почв – около 5 минут) и затем делают из почвенной суспензии ряд разведений на стерилизованной водопроводной воде, начиная от 0,1 до 0,0001 в зависимости от предполагаемого загрязнения. Из соответствующего разведения берут стерильной пипеткой 0,1 мл суспензии, вносят в пробирку с растопленным агаром, перемешивают и выливают содержимое пробирки в чашку Петри. Чашки с посевом ставят в термостат при 25-30°С на 72 часа, после чего выросшие колонии подсчитывают обычным способом и результаты перечисляют на 1 г почвы.

Качественный бактериологический анализ почвы

В санитарной практике главным образом определяют микроорганизмов – показателей фекального загрязнения почвы. К ним Bac. coli и её разновидности и Bac. perfringens как постоянные обитатели кишечника человека и животных. Исследование проводят путём посева почвенных суспензий на соответствующие избирательные среды. Санитарную оценку почвы дают по титру кишечной палочки и титру анаэробов (Bac. perfringens) по схеме, разработанной (табл. 3).

Таблица 3

Санитарная оценка почвы по титру кишечной палочки и титру анаэробов

Степень загрязнения

Титр анаэробов

Сильно загрязнённая

0,001 и ниже

0,0001 и ниже

Умеренно загрязнённая

Слабо загрязнённая

Чистая почва

0,01 и выше

Исследование почвы на наличие яиц гельминтов

Для гельминтологического исследования пробы почвы отбирают шпателем или совочком отдельно с поверхности земли и с глубины 2-10 см по 100 г в каждой точке. При изучении степени загрязнения яйцами гельминтов полей орошения и огородов пробы берут с глубины 20-25 см, чтобы определить возможность попадания их на корнеклубнеплоды. На очистных сооружениях отбирают пробы активного ила и осадков на поверхности и на глубине 0,5-1,0-2,0 м и глубже. После перемешивания средние пробы по 1 кг с каждого горизонта помещают в стеклянные банки или целлофановые мешки. Анализ следует проводить в течение нескольких дней.

Ход исследования.

Отвешивают 5-10 г почвы, тщательно измельчают и перемешивают (не менее 4 раз по 4-5 минут) при помощи стеклянных бус с 20 мл 5% раствора едкого натра или калия в круглых центрифужных пробирках объёмом 50 мл. Раствор щёлочи применяется для отделения яиц гельминтов от частиц почвы. Затем пробирки ставят в центрифугу и смесь центрифугируют в течение 1-2 минут, после чего избыток щёлочи сливают, прибавляют в пробирки насыщенный раствор азотнокислого натрия (удельный вес 1,19), тщательно перемешивают с почвой и центрифугируют по 2 минуты не менее 5 раз. После каждого центрифугирования поверхностную плёнку, в которой находятся всплывшие на поверхность яйца глистов, снимают петлёй и переносят в стаканчик с небольшим количеством воды; почву перемешивают с тем же раствором азотнокислого натрия, снова центрифугируют и вновь выделенные яйца переносят в тот же стаканчик с водой.

Можно обрабатывать почву и в обыкновенных химических стаканах, тщательно смешивая её стеклянными палочками и затем отстаивая в той же посуде. Отстаивание смеси после обработки почвы насыщенным раствором азотнокислого натрия в этих случаях должно производиться при спокойном стоянии в течение часа, после чего поверхностную плёнку снимают петлёй. Эффективность этого метода выделения яиц гельминтов ниже, чем при центрифугировании.

Воду в стаканчике, в которой переносилась поверхностная плёнка, фильтруют через мембранные фильтры в воронке Гольдмана и фильтры исследуют под микроскопом во влажном состоянии: яйца гельминтов легко и быстро обнаруживаются в чистом поле зрения, лишённом пузырьков воздуха. При отсутствии воронки Гольдмана поверхностную плёнку можно снимать в центрифужную пробирку с водой и исследовать этот осадок после его центрифугирования или отстаивания (рис. 2).



Рис. 2. Яйца гельминтов (увеличено).

Согласно схеме, в чистой почве яйца аскарид отсутствуют, в слабо загрязнённой почве их число доходит до 10, в умеренно загрязнённой – до 100 и в сильно загрязнённой – свыше 100.

Реакция на присутствие экскрементов

Для обнаружения присутствия экскрементов в почве к 250 мл водной вытяжки прибавляют 0,3 г винно-каменной кислоты (Н2С4Н4О6) и выпаривают досуха. Сухой остаток извлекают спиртом (5 мл), эту вытяжку выпаривают почти досуха, прибавляют к ней 5 мл 5% раствора едкого калия и испытывают на запах: при наличии загрязнения почвы экскрементами появляется специфический запах.

Реакция на присутствие мочи

100 мл водной вытяжки выпаривают досуха, затем сухой остаток растворяют в воде и фильтруют. Фильтрат сгущают в фарфоровой чашке, прибавляют несколько капель азотной кислоты и выпаривают досуха. Если почва содержит мочу, то сухой остаток приобретает красно-желтую окраску, изменяющуюся от прибавления нескольких капель аммиака в пурпуровую, а от едкого натрия (5%) в сине-фиолетовую.

Энтомологическое исследование почвы

Проводится с целью выявления в ней личинок и куколок мух. Для этого пользуются рамкой – трафаретом размером 25×25 см2, накладываемой на поверхность участка почвы. Внутри трафарета выкапывают почву на глубину 20 см и рассыпают на ровной поверхности. Личинки и куколки извлекают пинцетом и подсчитывают их количество. Результаты исследований оценивают по пятибалльной шкале: личинок нет – 1 балл, отдельные экземпляры личинок – 2, личинок мало – 3, личинок много – 4 и личинок очень много (кишат) – 5 баллов.

Численность окрылённых мух определяют следующим образом; визуально учитывают количество мух по шкале «мухи есть», «мух нет», «мух много» (больше 5); определяют массовый выплод мух в помещениях 1-2 раза в сезон в период высокой численности насекомых.

Численность мух систематически учитывают на открытом воздухе, на основании видового состава которых определяют степень загрязнения почвы; учитывают свежевыпложенных мух в местах обезвреживания отбросов.

Оценка результатов исследования механического состав почвы, физических свойств, химических показателей, данных биологических исследований основывается на комплексных обобщённых научных данных, характеризующих разные стороны состояния, давность за­грязнения, выживаемость в ней отдельных макро - и микро­орга­низ­мов.

Санитарная оценка почвы

Санитарную оценку почвы производят по данным физического, химического, бактериологического и гельминтологического исследований.

Примерная программа санитарного анализа почвы

I. Исследование физических свойств почвы

1. Определение механического состава почвы.

2. Определение пористости почвы.

3. Определение общей влажности почвы.

4. Определение гигроскопической влаги.

5. Определение воздухопроницаемости почвы.

6. Определение водопроницаемости почвы.

7. Определение влагоемкости почвы.

8. Определение капиллярности почвы.

II. Химический анализ почвы

1. Определение общего числа органических веществ.

2. Определение общего количества азота в почве.

3. Определение содержания минеральных азотсодержащих веществ:

a. азота аммиака и аммонийных солей;

b. азота нитритов;

c. азота нитратов.

4. Определение содержания сульфатов.

5. Определение содержания хлоридов.

6. Определение содержания фосфатов.

7. Определение содержания органического углерода.

III. Бактериологическое исследование почвы.

1. Определение микробного числа.

2. Определение титра кишечной палочки.

3. Определение титра B. perfringens.

4. Определение наличия патогенных микробов.

5. Определение наличия яиц гельминтов.

При оценке санитарного состояния почвы земельных участков, отводимых под строительство животноводческих ферм и комплексов, полей орошения и фильтрации скотомогильников проводят следующие анализы: определение механического состава, влажности свежевзятого образца, гигроскопической влажности, фильтрационной способности, капиллярности, влагоемкости, содержания аммиака, нитритов, нитратов, хлоридов, вредных химических веществ, количества микроорганизмов, коли-титра, загрязненности яйцами гельминтов, исследование на личинок и куколок мух.

Давность загрязнения почвы органическими веществами, степень и активность их разложения можно оценить по данным анализа этих процессов:

– загрязнение свежее;

аммиак, хлориды

– загрязнение произошло недавно;

аммиак, хлориды, нитриты

– процесс разложения органических веществ в разгаре;

аммиак, хлориды, нитриты, нитраты

– с момента загрязнения прошел некоторый срок, но имеется и свежее загрязнение;

хлориды, нитриты, нитраты

– свежего загрязнения нет, идет минерализация органических веществ;

нитриты, нитраты

– с момента загрязнения прошел некоторый срок;

– полная минерализация органических веществ.

При благоприятной эпизоотической обстановке исследования рекомендуется проводить по краткой санитарной схеме: определение влажности, хлоридов, окисляемости, коли-титра, титра анаэробов, содержания яиц геогельминтозов, личинок и куколок мух.

При оценке степени загрязнения почвы можно пользоваться табл. 4 (при условии, что пробы почвы отбирались с глубины до 20 см).

Таблица 4

Санитарное состояние почвы

Показатель

загрязненная

загрязненная

Число яиц гельминтов (в 1 кг)

100 и более

Число личинок, куколок мух (на 25 м2)

100 и более

кишечной палочки

0,009 и ниже

0,01 и выше

0,00009 и ниже

нитрифицирующих микроорганизмов

0,0009 и ниже

химически вредных веществ

Превышение ПДК в 10-100 раз

Превышение ПДК более чем в 100 раз

канцерогенных веществ (по бензопирену)

30 и более

*Предельно допустимые концентрации.

Контрольные вопросы

1. В чём заключается санитарно-гигиеническое значение почвы?

2. Какая почва наиболее благоприятна в санитарном отношении, и какие способы применяют для изучения санитарного состояния почвы?

3. Из чего слагается санитарно-топографическое обследование земельных участков (для пастбищ, для строительства сельскохозяйственных объектов, для скотомогильников, полей орошения и полей фильтрации)?

4. Правила взятия проб почвы для лабораторного исследования?

5. Какие существуют показатели загрязнения почвы органическими веществами и степень её самоочищения?

6. Как определяется, и какое санитарное значение имеет механический состав почвы?

7. Какими способами можно определить влажность почвы и общее количество органических веществ?

8. Каким образом готовят водную вытяжку из почвы, и какое санитарное значение имеет её исследование и из чего оно слагается?

9. Что такое окисляемость? Каков принцип её определения?

10. На основании каких показателей можно судить о степени и давности загрязнения почвы органическими веществами?

11. Какое санитарно-гигиеническое значение имеет:

11.1. фильтрационная способность почвы;

11.2. капиллярность почвы;

11.3. водоподъёмная способность почвы;

11.4. порозность (скважность) почвы;

11.5. влагоёмкость почвы;

11.6. гигроскопичность почвы.

12. Какие реакции применяют для обнаружения?

13. В чём состоит способ определения общего числа бактерий в почве?

14. Из чего складывается качественное санитарно-бактериологическое исследование почвы?

15. Как производят исследование почвы на наличие яиц гельминтов?

16. Какая существует схема для оценки загрязнения почвы яйцами гельминтов?

17. Как проводится санитарно-энтомологическое исследование почвы?

1. Астанин, Л. П. – Охрана природы / , ­склонов. – М.: Колос, 1976.

2. Гончарук, Г. И. – Гигиенические основы почвенной очистки сточных вод / и др. – М.: Медицина, 1976.

3. Дорнгольц, В. Ф. – Мир вод / . – Л.: Недра, 1979.

4. Минх, гигиенических исследований / . – М., 1961.

5. П – Уборка, транспортировка и использование навоза. М., 1973.

6. – Ветеринарная санитария / . – М.: Колос, 1979.

7. Практикум по почвоведению // Под ред. – М.: Колос, 1980.

27.Гигиеническое значение твердых и жидких отходов. Санитарная очистка населенных мест. Гигиеническая характеристика основных методов обеззараживания бытовых сточных вод. Канализация населенных мест.

По В.Г. Горбову все отходы классифицируют следующим образом:

I Твердые

Нечистоты

Сточные воды

Уличный смет, домовой мусор, ос­татки пищи, ку­хонные, хозяйст­венные, промышленные отходы

Системы удаления.

1) Канализация. Предназначена для удаления жидких отбросов по тру­бам на очистные станции за пределы населенного пункта. Канализа­ция может быть

а) Общесплавная (единая сеть трубопроводов для всех стоков)

б) Раздельная (две системы труб: 1. для фекально-хозяйственных и промышленных стоков 2. Для атмосферных сточных вод)

2) Вывозная система.

Отбросы: нечистоты, помои, мусор

Приемники: выгребные ямы, мусоропровод, урны

Транспорт: автоцистерны, специальные машины

Очистка, обеззараживание и утилизация.

При вывозной системе удаления.

Нечистоты обезвреживают и утилизируют

1) На полях ассенизации (могут использоваться для сельскохозяйствен­ных целей на второй, третий год) и полях запахивания.

2) Внося как удобрение в почву (нежелательно)

Мусор сортируется на мусороутилизационных станциях а затем обезвре­живается:

1) Сжигание и специальных печах

2) Биотермический метод. При разведении в мусоре термофильных микроорганизмов его температура повышается до 50-70 градусов, что способствует гибели патогенных микробов, яиц гельминтов и тд.

3) Компостирование.

Очистка и обеззараживание хозяйственно-бытовых сточ­ных вод.

1) Механическая очистка. Цель - освобождение от крупных примесей, взвешенных частиц. Для механической очистки используются песко­ловки, сита, решетки, отстойники и тд.

2) Биологическая очистка. Цель - освобождение сточных вод от мел­ких взвешенных частиц и примесей, растворенных органических ве­ществ, обеззараживание.

1. Естественная биологическая очистка. Производится почвенным методом на так называемых полях фильтрации и полях орошения. Принцип очистки состоит в фильтрации сточных вод, выпускае­мых на эти поля, через почву. Профильтровавшаяся через почву жидкость попадает в систему труб и отводится в водоем. Очистка от взвешенных частиц и микробов происходит при фильтрации через почву. Растворимые органические вещества адсорбируются частичками почвы. Кроме того органические вещества окисляют­ся, метаболизируются микрофлорой почвы. Поля орошения могут по определенной схеме использоваться для выращивания сельско­хозяйственных культур.

2. Искусственная биологическая очистка. Производится путем фильтрации через фильтры, которые состоят из шлака, кокса, других материалов и покрыты биологической пленкой, адсорби­рующей органические вещества, микроорганизмы. Другим вари­антом являются аэротенки - резервуары, в которые подают сточ­ные воды с добавлением активного ила. Резервуары продуваются воздухом. Ил необходим для адсорбции и кроме того содержит микроорганизмы, обеспечивающие биологическую очистку.

28. Гигиеническая характеристика систем очистки населенных мест (больниц) от твердых отходов.

Удаление мусора из квартир в многоэтажных домах производится с помощью мусоропроводов, в остальных случаях - с помощью мусоросборников. Квартирным мусоросборником является обычно ведро с крышкой. Из квартир отбросы ежедневно выносят в дворовые мусоросборники (емкость 70-80 л).

Наиболее приемлемым в санитарном отношении и удобным для населения является метод удаления домового мусора через мусоропроводы. Загрузочные отверстия мусоропроводов находятся в кухнях или на площадках лестничной клетки. Загрузочное отверстие должно герметически закрываться. Внизу здания мусоропровод оканчивается бункером, из которого мусор пересыпается в мусоросборник.

В настоящее время в СССР почти повсеместно осуществляется планово-регулярная система очистки от мусора с ежедневным вывозом его из домовладений. Планово-регулярная система очистки осуществляется в двух вариантах: планово-подворном и планово-поквартирном.

Прииланово-подворной очистке мусор из дворовых мусоросборников пересыпают в мусоровоз обслуживающие его рабочие. В некоторых крупных городах в жилых районах с многоэтажной жилой застройкой перешли на систему сменных мусоросборников. Вместо переносных мусоросборников во дворах для сбора отбросов устанавливают металлический контейнер, представляющий собой закрытый ящик объемом 0,5-0,8 м3 с люком для загрузки мусора. Один контейнер рассчитан на обслуживание 350-500 жителей. В этом случае вывоз мусора осуществляется специальными автомашинами, которые выгружают пустые контейнеры и с помощью гидравлического подъемника забирают наполненные.

При планово-поквартирной системе очистки по сигналу приезжающего 1-2 раза в день в одно и то же время мусоровоза жители выносят мусор из квартир и пересыпают его непосредственно из ведер в мусоровоз. В этом случае нет надобности хранить мусор во дворе. Санитарное состояние жилых усадьб лучше, а мусоросборники не портят вида территории двора. Планово-поквартирную систему очистки считают более приемлемой для небольших населенных мест с малоэтажной застройкой.

Описанные варианты планово-регулярной очистки сыграли положительную роль в деле улучшения санитарного состояния населенных мест, борьбы с мухами и профилактики кишечных инфекций.

Вывоз мусора, как и вывоз нечистот, должен производиться планово и регулярно без каких-либо заявок от домоуправлений. Транспорт, предназначенный для вывоза мусора, должен иметь удобный люк для беспыльной загрузки и плотный, без щелей, кузов с крышкой, чтобы во время езды ветер не разносил мусор. Загрузка и выгрузка мусора облегчаются при использовании специальных машин - мусоровозов. С гигиенической точки зрения более премлема система сменных контейнеров.

Обезвреживание и утилизация твердых отбросов. Известно много способов обезвреживания мусора: биотермические методы, усовершенствованные свалки, мусоросжигание и др.

29.Теплообмен между человеком и окружающей средой. Теплопродукция и теплоотдача организма при различных физических условиях воздушной среды. Гигиеническое значение температуры, влажности, подвижности воздуха, тепловой радиации.

Цель терморегуляции - поддержание постоянной температуры тела при изменяющихся условиях внешней среды. В основе терморегуляции лежат два противоположных процесса - теплопродукция и теплоотдача.

Основную роль в регуляции теплообмена играет теплоотдача. Она осу­ществляется следующими путями:

1. Конвекция - нагревание воздуха, прилегающего к поверхности тела или к поверхности одежды. Одежда нагревается методом теплопере­дачи или тешюпроведения при контакте с телом. Потеря тепла мето­дом теплоотдачи также возможна при непосредственном контакте с предметами окружающей среды, имеющими более низкую температу­ру, чем тело человека. Отдача тепла методом конвекции возможна только в том случае, если температура окружающего воздуха ниже, чем температура тела. Составляет примерно 20 % от всей теплоотда­чи. Высокая влажность воздуха увеличивает потери тепла путем кон­векции.

2. Излучение - составляет самую большую часть (56 %). Осуществляется только в том случае, если температура воздуха и окружающих предме­тов ниже температуры тела.

3. Испарение составляет 24 %. Отличается тем, что протекает при любой температуре окружающей среды. Является единственным методом теп­лоотдачи в том случае, когда температура окружающей среды выше температуры тела. Чем выше скорость движения воздуха и ниже влаж­ность, тем быстрее идет процесс испарения. Неподвижный воздух и высокая влажность, напротив, сильно затрудняют отдачу тепла путем испарения.

В условиях воздействия низких температур может происходить переохлаждение организма за счет увеличения теплоотдачи. При низкой температуре окружающего воздуха резко увеличиваются потери тепла путем конвек­ции, излучения.

При холодовом воздействии изменения возникают не только непосредст­венно в области, воздействия, но также и на отдаленных участках тела. Это обусловлено местными и общими рефлекторными реакциями на охлаждение. Например, при охлаждении ног, наблюдается снижение температуры слизистой оболочки носа, глотки, что приводит к снижению местного иммунитета и возникновению насморка, кашля и тд. Другим примером рефлекторной ре­акции является спазм сосудов почек при охлаждении оршнизма. Длительное охлаждение ведет к расстройствам кровообращения, снижению иммунитета.

Гигиеническое значение температуры воздуха определяется прежде всего ее влиянием на теплообмен организма, который является одним из видов взаимодействия организма с внешней средой. Благодаря совершенству механизмов терморегуляции, контролируемых центральной нервной системой, человек приспосабливается к различным температурным условиям и может кратковременно переносить значительные отклонения от оптимальных температур.

Из-за испарения влаги в воздухе постоянно находится некоторое количество водяных паров, которые обусловливают влажность воздуха. Степень влажности воздуха изменяется в зависимости от ряда условий: температуры воздуха, высоты над уровнем моря, расположения в данной местности морей, рек и других крупных водоемов, характера растительности и др. Находящиеся в воздухе водяные пары, как и другие газы, обладают упругостью, которая измеряется высотой ртутного столба в миллиметрах.

Влажность воздуха характеризуется следующими основными понятиями: абсолютная влажность, максимальная влажность, относительная влажность.

Абсолютная влажность - упругость (мм рт. ст.) или количество водяных паров (г), находящихся в данное время в 1 м3воздуха. Максимальная влажность - упругость водяных паров (мм рт. ст.) при полном насыщении воздуха влагой при данной температуре или количество водяных паров (г), необходимое для полного насыщения 1 м3 при той же температуре. Относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах, иными словами - процент насыщения воздуха водяными парами в момент наблюдения. Относительная влажность воздуха определяется по формуле:

Где О - относительная влажность (%), А - абсолютная влажность (мм рт. ст.), М - максимальная влажность (мм рт. ст.).

Подвижность воздуха влияет на теплопотери организма путем конвекции и потоиспарения. При высокой температуре воздуха его умеренная подвижность способствует охлаждению кожи. Мороз в тихую погоду переносится легче, чем при сильном ветре, наоборот, зимой ветер вызывает переохлаждение кожи в результате усиленной отдачи тепла конвекцией и увеличивает опасность обморожений. Повышенная подвижность воздуха рефлекторно влияет на процессы обмена веществ, по мере понижения температуры воздуха и увеличения его подвижности повышается теплопродукция.

30.Понятие о микроклимате. Параметры которые его характеризуют. Нормативы микроклимата для помещений различного назначения. Физиологические изменения в организме и заболевания, обусловленные действием неблагоприятного микроклимата (в условиях производства, больницы), их профилактика.

Микроклимат представляет собой комплекс физических свойств воздуха, оказывающих влияние на теплообмен человека с окружающей средой, на его тепловое состояние в ограниченном пространстве (в отдельных помещениях, городе, лесном массиве и т.п.) и определяющих его самочувствие, работоспособность, здоровье и производительность труда. Показателями микроклимата являются температура и влажность воздуха, скорость движения воздуха и тепловое излучение окружающих предметов и людей.

Состояние микроклиматических факторов обусловливает особенности терморегуляции организма человека, которая в свою очередь определяет тепловой баланс. Он достигается соотношением процессов теплопродукции и теплоотдачи организма. Теплопродукция происходит при окислении пищевых веществ, а также при сокращении скелетной мускулатуры (Q прод.). Кроме того, тело человека может получать конвекционное и радиационное тепло от окружающего воздуха и нагретых предметов, если их температура выше температуры кожи открытых частей тела (Q внеш.). Основные механизмы отдачи тепла телом человека: кондукция в прилегающие к коже слои воздуха и менее теплые предметы (Q конд.) и последующая конвекция нагретого воздуха (Q конв.), излучение по направлению к менее нагретым предметам (Q изл.), испарение пота с кожи и влаги с поверхности дыхательных путей (Q исп.), нагревание до 37 ?С вдыхаемого воздуха Qнагр.). Тепловой баланс в общем виде может быть представлен уравнением:

Опрод. + Qвнеш. - (< >) Qконд. + Qконв. + Qизл. + Оисп. + -нагр.

Нормальная жизнедеятельность организма и высокая работоспособность возможны лишь в том случае, если сохраняется темпе- ратурное постоянство организма в определенных границах (36,1- 37,2 ?С), имеется тепловое равновесие его с окружающей средой, т.е. соответствие между процессами теплопродукции и теплоотдачи.

Неблагоприятное влияние микроклимата обусловлено комплексным воздействием физических факторов воздушной среды: повышением или понижением температуры, влажности или скорости движения воздуха. При повышенной температуре воздуха высокая влажность препятствует испарению пота и влаги и увеличивает опасность перегревания организма. Высокая влажность при низкой температуре увеличивает опасность переохлаждения, поскольку влажный воздух, заполняющий поры одежды, в отличие от сухого - хороший проводник тепла. Высокая скорость движения воздуха увеличивает теплоотдачу через конвекцию и испарение и способствует более быстрому охлаждению организма, если его температура ниже температуры кожи, и, наоборот, увеличивает тепловую нагрузку на организм при температуре, превышающей температуру кожи.

Период года Категория работ (по уровню энерготрат), Вт Температура воздуха, ?С Температура поверхностей, ?С Относительная влажность воздуха,% Скорость движения воздуха, м/с
1а (< 139) 22-24 21-25 40-60 0,1
16 (140-174) 21-23 20-24 40-60 0,1
Холодный 11а (175-232) 19-21 18-22 40-60 0,2
116 (233-290) 17-19 16-20 40-60 0,2
111 (> 290) 16-18 15-19 40-60 0,3
1а (< 139) 23-25 22-26 40-60 0,1
16 (140-174) 22-24 21-25 40-60 0,1
Теплый 11а (175-232) 20-22 19-23 40-60 0,2
116 (233-290) 19-21 18-22 40-60 0,2
111 (> 290) 18-20 17-21 40-60 0,3

Влияние высокой температуры воздуха на организм

При повышении температуры окружающего воздуха происходит увели­чение активности системы терморегуляции, что выражается в усилении про­цессов теплоотдачи. Это необходимо для того, чтобы сохранить тепловой ба­ланс на фоне увеличившегося притока тепла извне.

При этом необходимо отметить, что отдача тепла путем конвекции и из­лучения снижается пропорционально росту температуры воздуха, прекраща­ясь при сравнивании температуры поверхности тат и окружающей среды.

Поэтому естественно, что с увеличением температуры воздуха все боль­ше и больше тепла отдается путем испарения за счет увеличения потоотделе­ния (при умеренном напряжении системы терморегуляции потеря тепла испа­рением может составлять 40-45 %, а при сильном напряжении терморегуля­ции - свыше 50 %).

В том случае если система терморегуляции в условиях нагревающего микроклимата не справляется со своей функцией происходит перегревание (гипертермия), то есть повышение температуры тела по сравнению с нормой. Перегревание чаще всего происходит при высокой температуре окружающей среды в сочетании с высокой влажностью и низкой скоростью движения воз­духа, так как при наличии последних двух условий резко снижается отдача тепла путем испарения. Кроме того, перегреванию способствуют такие эндо­генные факторы как гипертиреоз, ожирение, вегетососудистая дистония и тд.

При длительном пребывании в условиях нагревающего микроклимата повышается температура тела, учащается пульс, понижается компенсаторная способность сердечно-сосудистой системы, функциональная активность ЖКТ и др. ■ -

К группе патологических состояний, возникающих при перегре­вании (тепловых. поражений) относятся: тепловой удар, тепловой обморок, судорожная болезнь, питьевая болезнь, нервные расстройства, тепловое ис­тощение.

Тепловой удар. Возникает вследствие острой недостаточности терморе­гуляции, чаще у здоровых молодых людей при интенсивной физической ра­боте в условиях высокой температуры окружающей среды. Клинические про­явления: резкое увеличение температуры тела (до 42°С и выше), гиперемия кожных покровов и слизистых, сухость слизистых, увеличение частоты дыха­ния, тахикардия, слабость. Характерно прекращение потоотделения за не­сколько часов до наступления теплового удара. Кроме того наиболее ранним

признаком начинающейся гипертермии является необычное поведение чело­века (это обусловлено тем, что нервная система очень чувствительна к по­вышению температуры тела). Тепловой удар опасен своей высокой летально­стью.

Тепловой шок - коллапс (острое нарушение гемодинамики)

Солнечный удар. Может наблюдаться при интенсивной солнечной ра­диации в жаркую погоду. Обусловлен перегреванием непосредственно ЦНС (головного мозга). Профилактика - головной убор.

Тепловое истощение. Связано с потерей воды, солей, витаминов, белков.

Судорожная болезнь. Связана с тем, что с потом выводятся минераль­ные вещества - хлориды натрия и калия и возникают судороги..

Питьевая болезнь. Связана с компенсаторным увеличением потребления воды человеком (из-за обезвоживания). При этом могут возникать дисбакте-риозы, хронические диспепсии, энтероколиты, стойкая альбуминурия.

Нервные расстройства. Нервная система наиболее чувствительна к по­вышению температуры тела, поэтому перегревание может вести к ее функ­циональным нарушениям.

Тепловой отек голени, и стопы. Связан с нарушением водно-солевого обмена.

К общим мерам профилактики перечисленных состояний можно отнести следующие:

1. Акклиматизация

2. Поддержание нормального водно-солевого обмена.

3. Рациональный режим труда и отдыха в нагревающем микроклимате

Влияние низкой температуры воздуха на ор­ганизм человека. В условиях воздействия низких температур может происходить переохлаждение организма за счет увеличения теплоотдачи. При низкой температуре окружающего воздуха резко увеличиваются потери тепла путем конвек­ции, излучения.

Особенно опасно сочетание низкой температуры с высокой влажность и высокой скоростью движения воздуха, так как при этом значительно воз­растают потери тепла конвекцией и испарением.

При холодовом воздействии изменения возникают не только непосредст­венно в области, воздействия, но также и на отдаленных участках тела. Это обусловлено местными и общими рефлекторными реакциями на охлаждение. Например, при охлаждении ног, наблюдается снижение температуры слизистой оболочки носа, глотки, что приводит к снижению местного иммунитета и возникновению насморка, кашля и тд. Другим примером рефлекторной ре­акции является спазм сосудов почек при охлаждении организма. Длительное охлаждение ведет к расстройствам кровообращения, снижению иммунитета.

При сильном холодовом воздействии может происходить общее переох­лаждение организма. Оно протекает в несколько стадий.

Даже при довольно кратковременном пребывании в условиях резкого охлаждения могут возникать обморожения (особенно открытых частей тела при низкой температуре и сильном ветре)

При сравнительно длительном нахождении человека в условиях низкой температуры могут наблюдаться:

1. Возникновение или обострение заболеваний органов дыхания (риниты, бронхиты, плевриты, пневмонии и тд.)

2. Поражения мышечно-суставного аппарата (миозиты, миалгаи, рев­матические поражения)

3. Патологические изменения со стороны периферической нервной сис­темы (радикулиты, невриты и тд.)

4. Заболевания почек (нефриты)

Профилактика:

1) Тренировка и закаливание

2) Горячее питание

3) Рациональная одежда

4) Рациональный режим пребывания и труда в условиях низких темпе­ратур.

31.Гигиеническое значение естественного освещения закрытых помещений; показатели, которые его характеризуют; требования к нему в зависимости от назначения помещения; методы оценки освещенности.

На интенсивность естественного освещения влияют: географическая ши­рота, время года, время дня, облачность, запыленность атмосферы, ориента­ция здания, близость и размеры затеняющих объектов, площадь, расположе­ние и форма окон, цвет стен, потолка, пола, мебели, глубина помещения, площадь помещения и др.

Для гигиенической оценки естественного освещения использую следую­щие показатели:

Показатель Характеристика Норма
Световой ко­эффициент Отношение остекленной поверхно­сти окон к площади пола Жилые помещения - 1:8 - 1:10. Школь­ные классы - 1:4 -1:5
Угол падения. Угол падения лучей света относи­тельно горизонтальной плоскости 27°
Угол отвер­стия Угол между верхней границей окна и крышей противостоящего здания (видимый из окна участок неба)
Коэффициент глубины зало­жения Отношение длины (глубины) поме­щения к высоте окна Не менее 2.5
Коэффициент естественной освещенности (КЕО) Отношение освещенности в данной точке помещения к одновременной наружной освещенности (в тени), выраженное в процентах. В жилых помещениях - не менее 0.5 % в 1 м. от стены, проти­воположной окнам. В классах - не менее 1 %.

Ориентация.

Для максимального использования естественного освещения без -перегре­ва необходима правильная ориентация палат и других больничных Помеще­ний.

Цвет стен.

В больнице кроме белого цвета должны быть живые цвета, например, цвет морской волны, что благоприятнее действует на больных и вместе с тем обеспечивает высокую освещенность (меньше поглощают, больше отражают).

Световой коэффициент (СК)

Операционные, родовые палаты, перевязочные 1:4- 1:5

Палаты, кабинеты врачей,1 манипуляционные и др. 1:5 - 1:6

Коэффициент естественного освещения (КЕО) Операционные 2,5%

Процедурные 1,5%

Палаты, кабинеты врачей 1.0 %

Оценка соответствия естественного освещения в помещении гигиеническим стандартам
Для этого необходимо определить: количество и ориентацию светопроемов, площадь остеклённой поверхности окна в % от площади оконного проема, коэффициент естественной освещенности, световой коэффициент, угол падения, угол отверстия, глубину заложения помещения, охарактеризовать санитарное состояние окон, окраску стен, потолка, мебели.
а. КЕО
Представляет собой отношение естественной освещенности в данной точке помещения (е) к одновременно замеренной горизонтальной освещенности на открытом месте (Е), выраженной в процентах. Для определения КЕО необходимо измерить освещенность на самом удаленном от окна рабочем месте и снаружи в защищенной от прямых солнечных лучей точке. Измерение производится в одно и то же время, рассчитывается процентное отношение.
КЕО = е / Е. 100%
Коэффициент естественного освещения (КЕО) в жилых помещениях 0,5 0,75 %. Минимальный КЕО в классах, библиотеках, читальных залах, врачебном кабинете, в классах рисования, ручного труда и в лабораториях должен быть не менее 1,25%. В перевязочных, родильных, манипуляционных, зубоврачебных кабинетах – не менее 1,5%, в операционных и чертежных – не менее 2%.
Для определения продолжительности использования естественного освещения в помещениях различного назначения вводится понятие о критической наружной освещенности Екр, то есть такой освещенности, при которой включается искусственное освещение в помещениях. Величина наружной критической освещенности принимается за 5000 лк.
б. Определение светового коэффициента
Световой коэффициент выражает отношение световой (застекленной) поверхности всех окон к площади пола. Его лучше выражать простой дробью (например: световой коэффициент равен 1/4 или 1/6).
В жилых комнатах в условиях холодного, умеренного, теплового климата, это отношение должно составлять 1/8, для жаркого климата - 1/10, в палатах и врачебных кабинета 1/5 - 1/6, в школьных классах 1/4 - 1/5, в операционных 1/3.
в. Определение угла падения
Угол падения показывает под каким углом падают лучи света на данную горизонтальную поверхность (стол); ясно, что чем больше угол, тем значительнее освещенность.
Угол падения образуется двумя линиями, одна из которых горизонтальная, проводится от места определения (поверхности стола) к оконной раме, другой из той же точки к верхнему краю окна. Для определения угла падения измеряют высоту стола, на котором хотят произвести измерение. На окне, у окна делают отметку найденной высоты и определяют расстояние по горизонтали до центральной точки рабочего места и по вертикали – до верхнего края окна (т.е. находим два катета треугольника). Отношение одного катета (вертикального) к другому (горизонтальному) есть тангенс искомого угла. С помощью таблиц натуральных значений тригонометрических функций (тангенсов) определяют угол падения (табл. 1).
Угол падения в норме 270 на самом удаленном от окна рабочем месте.
г. Измерение угла отверстия Угол отверстия дает представление о величине небесного свода, непосредственно освещающего рабочее место (исследуемое). Для его определения проводят в уме прямую линию от исследуемой поверхности крышки стола; к высшей точке противоположного дома, дерева и делают отметку на косяке окна в месте прохождения этой линии.
Угол отверстия в норме 5°.
д. Определение глубины заложения
Глубина заложения помещения – это отношение глубины помещения (расстояние от наружной до внутренней стены) к расстоянию от верхнего края окна до пола. Глубина заложения в норме 1:2.

32.Гигиеническое значение искусственного освещения. Показатели его характеризующие. Гигиенические требования к И.О. в жилище, в больнице, в производственных помещениях (спектр, освещенность, яркость, равномерность). Принципы нормирования освещенности.

Искусственное освещение.

Системы освещения:

1) Общее освещение. Осуществляется за счет прикрепленных к потолку светильников. Светильники могут быть

1. Прямого света. Весь свет идет прямо вниз, создавая тени, нерав­номерность освещения, оказывая слепящее действие.

2. Отраженного света. Свет идет к потолку (за счет абажура) и от­ражается от него вниз. Наиболее благоприятны (мягкий, равно­мерный свет), экономически невыгодны.

3. Рассеянного (полуотраженного) света - наиболее распространены. Дают равномерное освещение во всех направлениях, удовлеудовлетворяют экономическим требованиям.

2) Местное освещение. Создает освещенность (на освещаемой поверхно­сти), которая должна превосходить по силе общую освещенность ок­ружающего пространства (не больше чем в 10 раз, так как при силь­ном контрасте глаза во время перерывов в работе не успевают при­спосабливаться к меньшей освещенности и наступает утомление).

3) Комбинированное освещение (местное + общее)

4) Смешанное -(искусственное + естественное) - самое распространенное и благоприятное.

Нормы общего искусственного освещения:

Нормируется освещенность. При этом нормы освещенности для люми­несцентных ламп в 2 раза ниже, чем для ламп накаливания.

Нормы освещенности в различных (не больничных) помещениях:

Естественно, что нормы сравниваются с реальной освещенностью. Реальную освещенность можно определить двумя способами

1. Путем измерения с помощью специального прибора - люксометра

2. Расчетным путем:

Освещенность = Число ламп * Мощность одной лампы * Е

Площадь помещения Е = 2.5 для ламп накаливания Е = 12 для люминесцентных ламп

Требования к искусственному освещению:

1) Достаточность

2) Близость по спектру к естественному свету

3) Равномерное распространение

4) Отсутствие слепящего действия

5) Отсутствие побочных эффектов

6)Экономичность

33.Сравнительная гигиеническая характеристика искусственного освещения (газоразрядные, люминесцентные и лампы накаливания).

Источники искусственного света:

1) Люминесцентные лампы. По спектру близки к естественному свету, экономичны, дают равномерное освещение. Недостатки - небольшой шум, стробоскопический эффект (пульсация светового потока)

2) Лампы накаливания. Менее экономичны, не близки по спектру к ес­тественному свету, однако не имеют недостатков люминесцентных ламп. Используются чаще, особенно в бытовых условиях.

3) Газоразрядная лампа представляет собой колбу из обыкновенного или специального стекла, заполненную разреженным инертным газом или парами ртути, внутрь которой впаяны металлические электроды.

В отличие от ламп накаливания, у которых источником излучения является накаленное тело, в газоразрядных лампах светящимся телом является межэлектродный промежуток. Газоразрядная лампа до включения в сеть является диэлектриком. Когда же к лампе приложено электрическое напряжение, происходит пробой и диэлектрик скачкообразно превращается в проводник. При этом лампа не имеет какого-либо определенного электрического сопротивления. Ее сопротивление уменьшается по мере увеличения силы проходящего через нее тока.

34.Гигиеническое значение денатурации воздуха в жилых и общественных помещениях. Гигиеническое обоснование норм, площади, кубатуры, кратности обмена воздуха в помещениях разного назначения. Санитарное назначение двуокиси углерода как показателя антропогенного загрязнения воздуха.

Источники загрязнения (денатурации) воздуха помещений делятся на две основные группы: внешние и внутренние.
Основные источники внешнего загрязнения воздуха: тепло и гидроэлектростанции (при сгорании одной тонны каменного угля в среднем выделяется около 50 кг пылевидных веществ, до 20 кг сернистого ангидрида, 170 кг угарного газа), выбросы промышленных предприятий, автомобильный транспорт, почвенный пыль.

В жилых помещениях, находящихся на территориях с загрязненным атмосферным воздухом, почти все химические газовые компоненты присутствуют и в воздухе помещений. Чем выше уровень загрязнения внешней атмосферного воздуха, тем выше содержание соответствующих загрязнителей в воздухе жилья.

Вследствие физиологических, бытовых, производственных и других процессов воздуха помещений существенно отличается от атмосферного воздуха. Изменения состава и свойств воздуха помещений по сравнению с чистым атмосферным воздухом представлен в табл. 5.1.

Ведущее гигиеническое значение имеет загрязнение воздуха различными химическими веществами, снижение содержания кислорода и легких аэроионов с отрицательным зарядом, в результате чего происходит денатурация воздуха, которая негативно влияет на здоровье человека.

На загрязненность воздуха может указывать изменение различных пара­метров. Так, при пребывании в помещении людей через некоторое время можно выявить следующие изменения:

Увеличение концентрации углекислого газа Увеличение микробной обсемененности Увеличение концентрации антропотоксинов Увеличение концентрации тяжелых ионов Увеличение влажности воздуха Увеличение содержания пыли Уменьшение числа легких ионов Снижение концентрации кислорода

Уменьшение охлаждающей способности воздуха (повышение температуры) 54

Однако, основным косвенным показателем загрязненности воздух жилых помещений служит углекислый газ (точнее его концентрация в воздухе).

При нахождении в помещении людей концентрация углекислого газа по­степенно увеличивается, так как выдыхаемый воздух содержит повышенное его количество.

Концентрация углекислого газа выражается в процентах (%) и промилях (/<">). 1 промиля (17~) - это количество мл газа в 1 л воздуха.

Как известно, концентрация углекислого газа в атмосферном воздухе со­ставляет приблизительно 0.04 % (0.4 °/~).

35.Гигиенические требования к отоплению жилых домов, больниц, детских учреждений, общественных построек; гигиеническая характеристика различных видов отопления. Кондиционирование воздуха, применение его в лечебных учреждениях.

Воздушное отопление.

Наружный воздух нагревается до 45-50 градусов в камерах и через кана­лы в стенах подается в помещение, откуда забирается посредством вытяжных каналов.

Недостатки:

1) Высокая температура и низкая влажность подаваемого воздуха

2) Неравномерность обогрева помещения

3) Возможность загрязнения приточного воздуха пылью

Показано для помещений с высокой влажностью, но в целом для ото­пления жилых помещений нецелесообразно.

Система парового отопления.

Устройство:

Имеются паровые котлы, где образуется пар, который идет по трубам и, проходя через калорифер конденсируется, отдавая тепло и нагревая батареи, образовавшаяся вода возвращается обратно.

Паровое отопление хотя широко использовалось вплоть до 70-х годов, в дальнейшем не нашло распространения. И хотя оно было экономически вы­годным оно повсеместно было заменено водяным отоплением.

Недостатки парового отопления

1) Практически не регулируется, так как пар всегда имеет температуру около 100 градусов. Поэтому данная система отопления не может создавать в помещении различную температуру в зависимости от тем­пературы наружного воздуха.-

2) Продукты неполного сгорания дают запах в помещении.

3)Создает шум, так как пузырьки пара издают металлические звуки.

4) Если образовалось микроотверстие, то пар заполняет помещение. Влажность при этом поднимается до 100 %

5) Высокая влажность воздуха в помещении и при нормальном функ­ционировании.

Все эти недостатки были устранены водяным отоплением.

Система водяного отопления.

По устройству похожа на систему парового отопления, но по трубам идет не пар, а горячая вода.

Отопление должно поддерживать постоянную комфортную температуру в помещении. Поэтому температура воды, идущей по трубам должна зависеть от температуры наружного воздуха:

Температура воды 65°

Температура воды в системе должна быть обратно про­порциональна температуре окружающей среды

Температура на улице

Таким образом, большим преимуществом водяного отопления является возможность регулировки, то есть способность при различной температуре наружного воздуха обеспечивать оптимальную температуру в помещении. Отопление должно работать в строгом соответствии с температурой окру­жаю идей среды.

Водяное отопление наиболее распространено в настоящее время.

Лучистое (панельное) отопление.

Принцип заключается в нагреве внутренних поверхностей наружных-стен (панельная часть здания). В стенах прокладываются трубы водяного или парового отопления. В том случае, если стены холоднее тела человека (так обычно и бывает), то человек теряет тепло путем излучения к этим холодным поверхностям из-за разницы температуры. При панельном отоплении стены нагреваются до 35-45 градусов, поэтому потери тепла путем излучения резко уменьшаются, более того стены сами излучают тепло, которое поглощается телом человека. В связи с этим человек ощущает такой же тепловой ком­форт при температуре воздуха в.помещении 17-18 градусов, как при 19-20 градусах в обычных условиях.

Наконец, еще одним преимуществом лучистого отопления является воз­можность использования ею для охлаждения воздуха при пропускании, на-: пример, воды из артезианской скважины (10-15 градусов).

Отопление больничных помещений должно регулироваться и поддер­живать необходимую температуру. Обычно используется водяное отопление.

Вентиляция.

75 % инфекционных заболеваний передается воздушным путем, поэтому правильная вентиляция очень важна для больничных помещений.

Внутрибольничные инфекции часто возникают из-за плохой вентиляции, а именно, из-за плохого соотношения между притоком и оттоком воздуха или из-за нарушения целостности вентиляционной системы

В больничных помещениях используется приточно-вытяжная венти­ляция. В различных помещениях подача и удаление воздуха должны разли­чаться согласно с общим принципом, который - как уже упоминалось - гла­сит, что в чистых помещениях должен преобладать приток, а в 1рязных - вы­тяжка.

Существуют определенные нормы кратности вентиляции и соотношения притока и вытяжки в некоторых больничных помещениях:

36.Шум как фактор окружающей среды, параметры которые его характеризуют. Влияние на организм человека городского шума, меры профилактики.

Шум является довольно распространенным негативным фактором на Производстве. Повышенный уровень шума имеет место при клепке, че­канке, штамповке, работе на различных станках, испытании моторов и

Среди физических характеристик шума большое значение с точки зрения воздействия на организм человека имеет его частота. По частот­ной характеристике выделяют:

1. Низкочастотные шумы (до 400 Гц)

2. Среднечастотные шумы (400-1000 Гц)

3. Высокочастотные шумы (более 1000 Гц)

Вызывая колебания упругой среды, звуковая волна оказывает опре­деленное давление (так называемое звуковое давление). Слуховому порогу соответствует звуковое давление 2*10 Н/м. Человек воспринимает звук приблизительно логарифмически. Поэтому для характеристики шума были предложены логарифмические единицы, характеризующие десяти­кратное отличие одного звука от другого. Эта единица, которая характе­ризует десятикратное отличие громкости одного звука от другого назы­вается "белом". В практике чаще используют десятую часть бела - деци­бел (дБ).

Шум с силой звука 140 дБ даже в течение короткого времени вызы­вает разрыв барабанной перепонки. Звук порядка 130 дБ может вызывать острую ооль. шум выше 80 дБ может привести к стойкой потере слуха.

Воздействие шума на организм не является безразличным. Наиболее специфично воздействие шума на орган слуха.

Городской шум воспринимается прежде всего субъективно. Первым показателем неблагоприятного его действия являются жалобы на раздражительность, беспокойство, нарушение сна. В появлении жалоб уровень шума и фактор времени имеют решающее значение, но степень неприятных ощущений зависит и от того, в какой мере шум превышает обычный уровень. Значительную роль в возникновении у человека неприятных ощущений играют его отношение к источнику шума, а также заложенная в шуме информация.

Таким образом, субъективное восприятие шума зависит от физической структуры шума и психофизиологических особенностей человека. Реакции на шум у населения неоднородна. Сверхчувствительны к шуму 30% людей, имеют нормальную чувствительность - 60%, нечувствительны - 10%.

На степень психологического и физиологического восприятия акустического стресса влияют тип высшей нервной деятельности, индивидуальный биоритмический профиль, характер сна, уровень физической активности, количество стрессовых ситуаций в течение суток, степень нервного и физического перенапряжения, а также курение и алкоголь.

Приведенны результаты социологических исследований по оценке действия шума, проведенные сотрудниками Института гигиены и медицинской экологии им. А.Н. Марзеева АМН Украины. Опрос 1500 жителей шумных улиц показал, что 75,9% жаловались на шум транспортного происхождения, 22% - на шум промышленных предприятий, 21% - на бытовой шум. У 37,5% опрошенных шум вызывал беспокойство, у 22% - раздражение и лишь 23% опрошенных - не жаловались на него. При этом больше всего страдали те, у кого было поражение нервной, сердечно-сосудистой систем и органов пищеварения. Постоянное проживание в таких условиях может стать причиной язвенной болезни желудка, гастрита из-за нарушения секреторной и моторной функций желудка и кишечника.

В районах с высоким уровнем шума большинство жителей отмечают ухудшение самочувствия, чаще обращаются к врачу, принимают седативные средства.

37.Гигиена одежды и обуви. Закаливание и физкультура как элементы личной гигиены, их значение для акклиматизации в условиях зимы. Основные принципы закаливания. Медицинский контроль его осуществления.

Основное назначение одежды - защита человека от неблагоприятных условий внешней среды и сохранения необходимой температуры тела. Одежда должна быть достаточно пористой, обладать способностью быстро поглощать и отдавать влагу, легко очищаться от загрязнений.

Летняя одежда должна быть из льняного полотна, хлопка или вискозы, иметь свободный покрой, быть легкой, удобной, не стеснять движений и не нарушать кровообращения. На холодный период одежда должна быть прилегающих силуэтов преимущественно из щерстяных тканей.
Нательное белье служит своеобразной "промокашкой"; поглощает пот, жир, минеральные соли, освобождает кожу отслущивающихся клеток. Все это помогает кожному дыханию. В настоящее время в ткани добавляют синтетическое волокно, отчего они меньше мнутся, выглядят наряднее, но хуже очищают кожу.
Чтобы одежда имела красивый и опрятный вид, хорошо грела, ее надо регулярно очищать стиркой или химической чисткой.

Обувь должна быть удобной, соответствовать ноге, ее размеру. конфигурации, должна соответ ствовать роду деятельности чело века, климату, погоде. Узкая, не удобная обувь может быть причи ной образования на ногах болеа ненных мозолей, трещин.
Нужно помнить, что от обуви зависит хорошее самочувствие и настроение.
Для сохранения обуви она нуждается в уходе - чистке, просуш ке, смазывании кремом.

Физическая культура оказывает благотворное влияние на нервно-эмоциональную систему, продлевает жизнь, омолаживает организм, делает человека красивее. Пренебрежение же к занятиям физкультурой приводит к тучности, потере выносливости, ловкости и гибкости.

Утренняя зарядка является важнейшим элементом физической культуры. Однако она полезна только при условии ее грамотного применения, которое учитывает специфику функционирования организма после сна, а также индивидуальные особенности конкретного человека. Так как организм после сна еще не полностью перешел к состоянию активного бодрствования, применение интенсивных нагрузок в утренней гимнастике не рекомендуется, а также нельзя доводить организм до состояния выраженного утомления.

Утренняя зарядка эффективно устраняет такие последствия сна, как отечность, вялость, сонливость и другие. Она увеличивает тонус нервной системы, усиливает работу сердечно – сосудистой и дыхательной систем, желез внутренней секреции. Решение этих задач позволяет плавно и одновременно быстро повысить умственную и физическую работоспособность организма и подготовить его к восприятию значительных физических и психических напряжений, часто встречающихся в современной жизни.

Закаливание организма – это система процедур, которые повышают сопротивляемость организма неблагоприятным воздействиям внешней среды, вырабатывают иммунитет, улучшают терморегуляцию, укрепляют дух. Закаливание - это своего рода тренировка защитных сил организма, их подготовка к своевременной мобилизации при необходимости в критических условиях.

В процессе закаливания организма нормализуется состояние эмоциональной сферы, человек становится более сдержанным, уравновешенным. Закаливание улучшает настроение, придает бодрость, повышает работоспособность и выносливость организма. Закаленный человек легче переносит критические перепады температуры и резкую смену погодных условий, неблагоприятные условия жизни, лучше справляется со стрессами.

Закаливание организма следует начинать, когда вы здоровы. Если в период закаливающих процедур у вас начала подниматься температура, то все процедуры следует прекратить. При закаливании важен самоконтроль, который проводится с учетом массы тела, температуры, пульса, артериального давления, сна, аппетита и общего самочувствия.

Закаливание организма (кроме моржевания) не лечит, а предупреждает болезнь, и в этом его важнейшая профилактическая роль. Главное же заключается в том, что закаливание приемлемо для любого человека, т.е. им могут заниматься люди любых возрастов независимо от степени физического развития. Закаливание представляет особую разновидность физической культуры, важнейшее звено в системе физического воспитания.

Закаливание организма - испытанное средство укрепления здоровья. В основе закаливающих процедур лежит многократное воздействие тепла, охлаждения и солнечных лучей. При этом у человека постепенно вырабатывается адаптация к внешней среде, совершенствуется работа организма: улучшаются физико-химическое состояние клеток, деятельность всех органов и их систем.

Приступая к закаливанию, следует придерживаться следующих принципов:
1. Нужно избавиться от «микробного гнезда» в организме в виде больных зубов, воспаленных миндалин и т. д.
2. Закаливание организма надо проводить сознательно. Успех закаливающих процедур во многом зависит от наличия интереса к ним, положительного психологического настроя. Важно, чтобы закаливающие процедуры вызывали положительные эмоции.
3. Закаливание организма должно проводиться систематически, изо дня в день в течение всего года независимо от погодных условий и без длительных перерывов. Проведение закаливающих процедур в течение 2 - 3 месяцев, а затем их прекращение приводит к тому, что закаленность организма исчезает через 3 - 4 недели.
4. Сила и длительность действия закаливающих процедур должны наращиваться постепенно. Не следует начинать закаливание организма сразу же с обтирания снегом или купания в проруби. Такое закаливание может принести вред здоровью.
5. При закаливании организма важна последовательность в проведении процедур. Необходима предварительная тренировка организма более щадящими процедурами. Начать можно с обтирания, ножных ванн и уж затем приступить к обливаниям, соблюдая при этом принцип постепенности снижения температур.
6. При закаливании организма необходимо учитывать индивидуальные особенности и состояние здоровья. Закаливание оказывает сильное воздействие на организм, особенно на людей, впервые приступающих к нему. Поэтому прежде чем приступать к приему закаливающих процедур, следует обратиться к врачу. Учитывая возраст и состояние организма, врач поможет правильно подобрать закаливающее средство и посоветует, как его применять, чтобы предупредить нежелательные последствия.
7. При закаливании организма наиболее эффективным является использование разнообразных процедур, отражающих весь комплекс естественных сил природы.
8. Закаливание организма надо проводить с использованием разнообразных вспомогательных средств. Физические упражнения, игры и спорт прекрасно сочетаются с различными видами закаливания. Все это повышает сопротивляемость организма и не создает условий для привыкания к одному и тому же раздражителю.

Медицинский контроль за закаливанием детей и подростков: Разрабатывают планы мероприятий по закаливанию детей в разные сезоны года на основе данных тщательного изучения здоровья каждого ребенка, его физического воспитания в семье и в детском саду. Обучают педагогический и обслуживающий персонал методике проведения закаливающих процедур. Проводят беседы с родителями о значении закаливания для укрепления здоровья детей и обучают их методикам закаливания. Осуществляет систематический контроль за работой персонала по закаливанию детей в каждой возрастной группе, за соблюдением врачебно- медицинских указаний по отношению к детскому коллективу и каждому ребенку в отдельности. Знакомят воспитателей с результатами влияния закаливающих мероприятий на состояние здоровья детей и, при необходимости, вносят соответствующую коррекцию (в зависимости от степени закаленности детей, эпидемической обстановки, заболевания ребенка, изменения погодных условий, сезона, года и т.д.).


Похожая информация.


При выборе объектов для данного исследования необходимо учитывать их роль как возможных факторов передачи возбудите­лей инвазии (возможность обсеменения инвазионным материалом, а также контакта с человеком).

Бесполезно изучать обсемененность яйцами гельминтов участков почвы, плотно утрамбованных и по­стоянно облучаемых солнцем (например, на дорожках яйца гельмин­тов на их поверхности погибают, а попадания их с поверхности утрамбованной почвы в более глубокие слои не происходит).

Отбор проб почвы. При изучении степени загрязнения почвы яйцами гельминтов пробы ее отбирают в соответствии с ГОСТом17-4.4-02-84 «Охрана природы. Почвы. Методы отбора и подго­товки проб для химического, бактериологического, гельминтоло­гического и протозоологического исследования». Их берут с поверх­ности (1-3 см) - во дворах; с поверхности и с глубины 10-20 см - на огородах, в садах, на полях орошения.

С поверхности (1-3 см) пробы почвы берут ложкой, совочком или большим шпателем, а с глубины 10-20 см - лопатой или буром Некрасова. Пробы помещают в банки с крышками или пакеты из клеенки, целлофана. Каждая проба должна иметь этикетку с указа­нием места забора, даты, глубины, характера исследуемого участ­ка (в тени или на солнце, состав почвы, наличие растительности и т.п.).

Для выяснения обсеменения яйцами гельминтов исследуемой тер­ритории на участках вблизи выгребов, мусорных ящиков и подоб­ных мест выделяют площадку в 25 м2. Другую площадку такого же размера берут вдали от указанных объектов. С каждой из этих пло­щадок по диагонали отбирают 5-10 навесок по 10-20 г. После тщательного перемешивания этих навесок составляют среднюю пробу (масса каждой не менее 100-200 г).

В лаборатории пробы помещают (в пакетах) в холодильник или каждую из них пересыпают в кристаллизатор, заливают 3 % раство­ром формалина на физиологическом растворе (жидкость Барбагалло) или 3 % раствором соляной кислоты, а затем ставят в холодиль­ник. В холодильнике почву можно хранить не более 1 мес, время от времени аэрируя и увлажняя ее.

Методика исследования. Для исследования почвы на яйца гель­минтов предложены следующие методы.

Метод З.Г.Васильковой и В.А.Гефтер (1948) заключается в том, что 5-Ю г почвы тщательно смешивают с 5 % раствором едкого натра (или калия) в центрифужных пробирках объемом 50 см3, смесь центрифугируют в течение 1-2 мин, после чего избыток едкого натрия (или калия) сливают, осадок тщательно смешивают с насы­щенным раствором нитрата натрия (плотность 1,39) и центрифуги­руют в течение 2 мин не менее 5 раз. После каждого центрифугиро­вания поверхностную пленку переносят петлей в стаканчик с водой; смесь вновь тщательно перемешивают и центрифугируют. Снятую поверхностную пленку фильтруют в аппарате Гольдмана с исполь­зованием планктонных фильтров, которые затем микроскопируют. По данным авторов, эффективность метода достигает 44,6 %. Было предложено вместо снятия поверхностной пленки из центрифужных пробирок сливать часть насыщенного раствора соли в стаканчик с водой, а в пробирки с осадком добавлять столько же чистого ра­створа соли. Такую процедуру следует повторять не менее 3-5 раз. Последний раз сливается весь раствор соли, который фильтруют в аппарате Гольдмана, используя фильтры № 6, затем проводят микроскопию последних. Благодаря такому усовершенствованию автору удалось повысить эффективность выявления яиц гельминтов из почвы до 60-69,2 %.

В.А.Лугина (1968) рекомендовал вначале обрабатывать почву по методу З.Г.Васильковой и В.А.Гефтер, а затем, удалив щелочь, к осадку добавлять насыщенный раствор нитрата аммония. После пе­ремешивания и центрифугирования смеси сливают насыщенный раствор в стаканчик высотой 3 см, последний накрывают счетной пластинкой и весь раствор микроскопируют. Это исключает исполь­зование аппарата Гольдмана, насоса Камовского, фильтры. Недо­статки: трудность просмотра раствора соли, многократные перели­вы последнего снижают эффективность выявления яиц гельминтов на 20-30 %.

Н.А.Романенко (1968) и Г.Ш.Гуджабидзе (1969) предложили помещать 25 г почвы в центрифужные пробирки объемом 250 мл (в случае отсутствия пробирок такого объема можно пользоваться пробирками объемом 80-100 мл, но помещать в них следует 15 г почвы) и заливать ее 3 % раствором натриевой или калиевой щело­чи (в соотношении 1:1). После этого содержимое пробирок тщатель­но размешивают при помощи электромешалки или стеклянных па­лочек, отстаивают в течение 20-30 мин, а затем центрифугируют 5 мин при 800 об/мин. Надосадочную жидкость сливают, а почву промывают водой (1-5 раз в зависимости от типа почвы: для пес­чаных и супесчаных - достаточно одной промывки, для глинистых, суглинистых, черноземных - от 2 до 5) до получения прозрачной надосадочной жидкости. После промывки к почве добавляют 150 мл (45 мл в пробирки объемом 100 мл) насыщенного (плотность 1,38- 1,4) раствора нитрата натрия, тщательно размешивают и центрифу­гируют. Пробирки устанавливают в штатив, доливают тем же ра­створом соли до уровня на 2-3 мм ниже краев пробирок и накры­вают предметными стеклами. При этом очень важно исключить какую-либо потерю поверхностной пленки. Для этого между краем пробирки и предметным стеклом следует оставлять пространство шириной не более 10 мм, куда с помощью пипетки вносят насыщен­ный раствор соли до его соприкосновения с нижней поверхностью стекла. После этого предметные стекла осторожно передвигают до полного покрытия центрифужных пробирок. Через 20-25 мин от­стоя стекла снимают, переворачивая нижней поверхностью вверх, а на их место ставят другие, при необходимости и третьи. На снятые стекла наносят несколько капель 50 % раствора глицерина. Капли накрывают покровным стеклом и микроскопируют. Для обнаруже­ния яиц гельминтов предметные стекла просматривают при увели­чении в 80 раз (окуляр 10х, объектив 8X0,2), а для определения сте­пени их развития или деформации - в 400 раз (окуляр 10х, объек­тив 40X0,65). Эффективность метода 59,6-83,1 %, в среднем 73 %; на нее оказывают влияние тип и механический состав почвы, содер­жание перегноя, илистых фракций, емкость поглощения. Путем эк­спериментальных исследований рассчитаны поправочные коэффи­циенты (табл. 11) для установления истинного загрязнения некото­рых типов почв яйцами гельминтов. Применение поправочных ко­эффициентов позволяет определять истинное обсеменение почвы яйцами гельминтов. Для других типов почв и яиц гельминтов необ­ходимо провести дополнительные экспериментальные исследования.

Таблица 11. Поправочные коэффициенты для расчета истинной загрязненности некоторых почв яйцами гельминтов bgcolor=white>1,71
Почва Яйца
аскарид власоглавов
Дерново-подзолистая (супесь) 1,23 1,43
Дерново-подзолистая (суглинок) 1,45 1,5
Торфяно-глеевые 1,84 2,4
Чернозем обыкновенный 1,6 1,85
» типичный 1,7 2,3
» выщелоченный 1,43 2,1
» каштановый (супесь) 1,28 1,95
» каштановый (суглинок) 1,64 2,15
Аллювиально-лугово-лесная 1,37 1,65
Сероземы 1,39 1,6
Черная лесная 1,49
Горная лесная бурая 1,54 1,72
Желтоземы 1,79 1,94

На обработку проб почвы рекомендуемым методом затрачива­ется 4,6-10 ч (метод З.Г.Васильковой и В.А.Гефтер в модификации А.А.Намитокова требует 9-51,5 ч, т.е. в 2-5 раз больше), а эконо­мические расходы при этом снижаются в 2 раза. При этом исклю­чаются применение такой дефицитной и дорогостоящей аппарату­ры, как воронка Гольдмана, насосы Шинца и Камовского, фильт­рование, фильтры № 6. Некоторые авторы предложили проводить исследование поверхностной пленки непосредственно в центрифуж­ной пробирке под бинокулярным микроскопом МБС. Это позволя­ет сократить время исследования и повышает эффективность ана­лиза, так как исключает потери яиц гельминтов во время снятия по­верхностной пленки предметным стеклом.

Авторы рекомендуют подвергать почву трехкратной механической обработке электроме­шалкой с флотационным раствором, учитывая при этом, что добав­ление солевого раствора в пробирку после последней механической обработки нарушает поверхностную пленку. В связи с этим необ­ходима 10-минутная экспозиция исследуемой пробы перед ее микроскопированием, чтобы все яйца гельминтов снова оказались в поверхностной пленке. При этих условиях в пробах обнаруживает­ся свыше 70 % яиц гельминтов [Межазакис Ф.И., 1979].

Необходимо помнить, что в очагах описторхоза, клонорхоза дан­ная методика малопригодна, ибо яйца этих гельминтов, имеющие плотность больше таковой насыщенного раствора нитрата натрия, не будут всплывать в поверхностную пленку, а, наоборот, выпа­дут в осадок.

В таких случаях целесообразно применять флотационные раство­ры высокой плотности. Некоторые авторы предлагают для исследо­вания почвы и донных отложений на яйца гельминтов методику с использованием малогабаритной клинической центрифуги ОПН-3.

Пробы донных отложений поверхностных водоемов отбирают в соответствии с ГОСТом 17.1.5.01.-80 «Охрана природы. Гидросфе­ра. Общие требования к отбору донных отложений водных объек­тов для анализа на загрязненность». Для отбора проб применяют различные системы пробоотборников: дночерпатели, драги, стратиметры и трубки различных конструкций. Отбор проб донных отло­жений ручным или механизированным способом проводят с берега или различных плавсредств. Пробы помещают в стеклянные или другие емкости, этикетируют и доставляют в лабораторию, где их хранят в холодильнике.

В 20 клинических центрифужных пробирок объемом по 10 мл наливают 6 мл 2-3 % раствора едкого натрия (или калия) и вносят 2 = 2,5 г почвы или донных отложений (общая масса материала со­ставляет 40-50 г). Содержимое пробирок перемешивают стеклян­ной палочкой и центрифугируют при 1500 об/мин в течение 3 мин. В дальнейшем режим центрифугирования остается постоянным. После центрифугирования надосадочную жидкость сливают, а к осадку добавляют 8 мл воды. Смесь перемешивают и центрифуги­руют. Надосадочную жидкость сливают, а к осадку добавляют 3 мл раствора натриевой или аммиачной селитры (молярное соотноше­ние 9,4:5, плотность 1,4). Содержимое пробирок вновь тщательно перемешивают. При этом яйца гельминтов из почвы переходят в насыщенный раствор. Пробирки центрифугируют и оставляют в покое на 5 мин, после чего надосадочную жидкость переливают в чистый ряд пробирок (одна в одну) и доливают в каждую из них чистой воды до отметки 10 мл. При этом плотность раствора по­нижается до 1,05. Пробирки встряхивают и центрифугируют при 1500 об/мин в течение 5 мин. Этот прием позволяет сконцентриро­вать яйца гельминтов в осадке. Надосадочную жидкость сливают, а осадок из каждых 10 пробирок переносят в 2 пробирки. Таким об­разом, из 20 пробирок осадок концентрируется в 4. В каждую про­бирку к осадку доливают воду и сверху наслаивают 1 мл эфира. Про­бирки интенсивно встряхивают в течение 30-40 с, центрифугиру­ют при 1500 об/мин в течение 5 мин. Надосадочную жидкость сливают, осадок переносят пастеровской пипеткой на предметное стекло и накрывают покровными стеклами размером 20X20 мм. В случае если осадка мало, его просматривают весь, если его мно­го - к нему добавляют до 0,5 мл воды и просматривают из всего осадка только 0,1 или 0,2 мл, а полученный результат пересчитыва­ют на весь объем осадка, умножая в первом случае на 5, во втором на 2,5. Результаты просмотра осадка, взятого из каждой пробирки, суммируют.

Для повышения эффективности выявления яиц гельминтов и со­кращения затрат времени на микроскопирование при исследовании почвы нами предложена камера для количественного учета яиц гель­минтов во флотационной жидкости. Камера - усеченный стеклян­ный конус с углом наклона стенок 85°, приваренный широкой час­тью к дну чашки Петри. Диаметр верхней части 2,5 см, нижней 4 см, площадь соответственно 5,3 и 15,2 см2, высота 3,5 см, объем 25,6 см3.

Верхняя часть камеры покрывается счетной пластинкой из плек­сигласа размером 7X7X0,1 см. На одной поверхности пластинки на­несены параллельные линии - борозды, окрашенные в красный цвет; расстояние между ними 1,2 мм. Последнее равно диаметру поля зрения микроскопа МБИ-1 при кратности увеличения 10x10. Каме­ру заполняют поверхностным слоем флотационной жидкости до об­разования выпуклого мениска, после чего ее покрывают счетной пластинкой так, чтобы разлинованная поверхность была обращена к жидкости. Яйца гельминтов всплывают в течение 3-5 мин. Затем камеру помещают на предметный столик микроскопа и просматри­вают последовательно по интервалам между линиями. Для макси­мального выявления яиц гельминтов рекомендуется несколько раз собрать поверхностный слой флотационной жидкости. Камеру обез­зараживают кипячением в течение 10 мин, а счетную пластинку опускают на 15-20 ч в 2 % раствор карболовой кислоты.

Эффективность выявления яиц гельминтов с помощью предла­гаемой камеры изучена в сравнении с таковой при использовании способа В.А.Лугйны, применяемого при исследовании почвы и бы­товых сточных вод с одновременным учетом времени, затрачивае­мого на микроскопирование при каждом из сравниваемых способов.

Предлагаемой нами камерой выявляется больше на 15,9 % яиц гельминтов в почве и на 32 % в сточных водах и затрачивается в 4 раза меньше времени на микроскопирование. Большую определяемость яиц гельминтов и снижение затрат времени на микроскопи­рование предлагаемой камерой, по-видимому, можно объяснить уменьшением площади микроскопирования в конусе, более полным просмотром поверхностной пленки и исключением повторного мик­роскопирования полей зрения, а также возможностью просмотра всей толщи флотационной жидкости.

Приготовление насыщенных растворов. Для приготовления насы­щенных растворов можно применять как химически чистую соль, так и техническую селитру, используемую в ветеринарной практи­ке, сельском хозяйстве.

Раствор натрия н и трат a (NaN03). В кастрюле или ведер­ке смешивают натрия нитрат (или любую другую соль) с водой в соотношении 1:1 (1 кг соли на 1 л воды) и подогревают ее до обра­зования кристаллической пленки на поверхности растврра. Затем ра­створ охлаждают, измеряют денситометром его плотность (должна быть не ниже 1,38-1,4). При охлаждении насыщенного раствора на дно сосуда должны выпадать кристаллы соли.

Раствор свинца нитрата , Готовят раствор плотностью 1,5 (обладает высокой флотационной способностью). Берут 650 г вещества на 1 л воды. Соль растворяют в горячей воде в эмалированном ведре. Ее кладут в ведро с горячей водой порция­ми, подогревая содержимое ведра на электроплитке и постоянно пе­ремешивая до полного растворения. Фильтровать раствор необяза­тельно. Раствор свинца нитрата со временем дает осадок. В связи с этим его плотность уже через 24 ч после приготовления несколько падает. Поэтому раствор готовят в день исследования. Если же он приготовлен в большом количестве, то в последующие дни перед ис­следованием его подогревают, размешивая осадок. Свинца нит­рат - соль тяжелого металла, поэтому при работе соблюдают ос­торожность, избегая попадания вещества исследующему внутрь.