Главное квантовое число может принимать значения. Квантовые числа электронов

– целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Е n электрона (Е n = -13.6/n 2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = ћ[l (l + 1)] 1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом m s = ± 1/2, определяющим направление вектора спина электрона.

Основные квантовые числа

Главное квантовое число: n = 1, 2, … .
Квантовое число полного углового момента. j никогда не бывает
отрицательным и может быть целым (включая ноль) или полуцелым
в зависимости от свойств рассматриваемой системы. Величина полного углового
момента J связана с j соотношением
J 2 = ћ 2 j(j + 1). = + ,
где и векторы орбитального и спинового угловых моментов.
Квантовое число орбитального углового момента l может принимать
только целые значения: l = 0, 1, 2, … ∞. Величина орбитального углового L
момента связана с l соотношением L 2 = ћ 2 l (l + 1).
Магнитное квантовое число. Проекция полного, орбитального или спинового
углового момента на выделенную ось (обычно ось z) равна mћ.
Для полного момента m j = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента
m l = l , l -1, l -2, …, -(l -1), -l .
Для спинового момента электрона, протона, нейтрона, кварка m s = ±1/2
Квантовое число спинового углового момента s может быть либо целым,
либо полуцелым. s - неизменная характеристика частицы,
определяемая ее свойствами. Величина спинового момента S связана с s
соотношением S 2 = ћ 2 s(s + 1).
Пространственная четность. Она равна либо +1, либо -1 и
характеризует поведение системы при зеркальном отражении. P = (-1) l .

Существование сохраняющихся (неизменных во времени) физических величин для данной системы тесно связано со свойствами симметрии этой системы. Так, если изолированная система не изменяется при произвольных поворотах, то у неё сохраняется орбитальный момент количества движения. Это имеет место для атома водорода, в котором электрон движется в сферически симметричном кулоновском потенциале ядра и поэтому характеризуется неизменным квантовым числом l . Внешнее возмущение может нарушать симметрию системы, что приводит к изменению самих квантовых чисел. Фотон, поглощенный атомом водорода, может “перебросить” электрон на другую орбиту с другими значениями квантовых чисел.
Помимо квантовых чисел, отражающих пространственно-временную симметрию микросистемы, существенную роль у частиц играют так называемые внутренние квантовые числа. Ряд из них, такие как спин и электрический заряд, сохраняются во всех взаимодействиях, другие в некоторых взаимодействиях не сохраняются. Так кварковое квантовое число странность, сохраняющееся в сильном взаимодействии, не сохраняется в слабом взаимодействии, что отражает разную природу этих взаимодействий. Внутренним квантовым числом для кварков и глюонов является также цвет. Цвет кварков может принимать три значения, цвет глюонов – восемь.

Строение электронной оболочки атома.

Дополнительная

Основная

1. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия. М.; Медицина, 1991.

2. « Руководство к лабораторным занятиям по биоорганической химии.» Под редакцией Тюкавкиной Н.А., М.; Медицина 1991. 3. Потапов В.М. ,Татаринчик С.Н. Органическая химия.

М. « Химия « 1989.

1. ОвчинниковЮ.А. Биоорганическая химия. М.;

Просвещение, 1987

2. Райлс А., Смит К., Уорд Р. Основы органической химии

(для студентов биологических и медицинских специальностей.)

М.; Мир 1983

3. Морисон Р., Бойд Р. Органическая химия. М. Мир 1974

Основой современной теории строения атома являются законы и положения квантовой механики – раздела физики, изучающего движение микрообъектов (электронов, протонов и других частиц, которые имеют ничтожную массу).

Согласно квантово-механическим представлениям, движущимся микрообъектам присуща двойственная природа: они являются частицами, но имеют волной характер движения, т.е. микрообъекты обладают одновременно корпускулярными и волновыми свойствами.

Для описания движения микрочастиц используется вероятностный подход , т.е. определяется не их точное положение, а вероятность нахождения в той или иной области околоядерного пространства.

Состояние (в квантовой механике синоним слова «движение») электрона в атоме описывается с помощью квантово-механической модели - электронного облака. Электронное облако графически отражает вероятность пребывания электрона в каждом участке электронной орбитали. Под электронной орбиталью следует понимать область пространства, где с определенной долей вероятности (около 90-95%) возможно пребывание электрона. Электронная орбиталь каждого электрона в атоме называется атомной орбиталью (АО) , в молекуле – молекулярной орбиталью (МО) . Полное описание состояния электронного облака осуществляется с помощью уравнения Шредингера. Решение этого уравнения, т.е. математическое описание орбитали, возможно лишь при определенных дискретных (прерывных) значениях квантовых чисел

Орбитальное l (l n)

Магнитное квантовое число m ( m l)

Спиновое квантовое число S(m s)

Главное квантовое число (n) определяет основной запас энергии электрона, т.е. степень его удаления от ядра или размер электронного облака (орбитали). Оно принимает любые целочисленные значения, начиная с единицы. Для реально существующих атомов в основном состоянии n = 1÷7.

Состояние электрона, которое характеризуется определенным значением n, называется энергетическим уровнем электрона в атоме. Электроны, имеющие одинаковые значения n, образуют электронные слои (электронные оболочки ), которые можно обозначить и цифрами и буквами.



Значение n…………………………….1 2 3 4 5 6 7

Обозначение электронного слоя …….K L M N O P Q

Наименьшее значение энергии соответствует n = 1, и электроны с n = 1 образуют ближайший к ядру атома электронный слой, они более прочно связаны с ядром.

Орбитальное (побочное или азимутальное) квантовое число l определяет орбитальный момент количества движения электрона и характеризует форму электронного облака. Оно может принимать целочисленные значения от 0 до (п-1). Для реально существующих атомов в основном состоянии l принимает значение 0,1,2 и 3.

Каждому значению l соответствует орбиталь особой формы. При l =0 атомная орбиталь, независимо от значения главного квантового числа, имеет сферическую форму (S-орбиталь). Значению l=1 соответствует атомная орбиталь, имеющая форму гантели (p- орбиталь). Более сложные формы у d- и f-орбиталей (l =2, l =3).

Каждому n соответствует определенное число значений орбитального квантового числа, т.е. энергетический уровень представляет собой совокупность энергетических подуровней. Число энергетических подуровней каждого электронного слоя равно номеру слоя, т.е. значению главного квантового числа. Так первому энергетическому уровню (n=1) соответствуют один подуровень-s; второму (n=2) – два подуровня s и p; третьему (n=3) – три подуровня s, p, d; четвертому (n=4) – четыре подуровня s, p, d, f.

Таким образом, энергетический подуровень – это состояние электрона в атоме, которое характеризуется определенным набором квантовых чисел n и l. Такое состояние электрона, соответствующее определённым значениям n и l (тип орбитали), записывается в виде сочетания цифрового обозначения n и буквенного l , например 4p (n = 4; l = 1); 5d (n = 5; l = 2).

Таблица 1

Соответствие обозначений орбитального квантового числа и подуровня

Магнитное квантовое число определяет значение проекции орбитального момента количества движения электрона на произвольно выделенную ось, т.е. характеризует пространственную ориентацию электронного облака. Оно принимает все целочисленные значения от –l до +l , в том числе значение 0.

Так, при l =0 m=0. Это значит, что S- орбиталь имеет одинаковую ориентацию относительно трёх осей координат. При l =1 m может принимать три значения: -1; 0; +1. Это значит, что могут быть три р-орбитали с ориентацией по координатным осям x, y, z.

Любому значению l соответствует (2l +1) значений магнитного квантового числа, т.е. (2l + 1) возможных расположений электронного облака данного типа в пространстве. S – состоянию соответствует 2×0 + 1 = 1 одна орбиталь, p- состоянию 2×1 + 1 = 3 три орбитали, d-состоянию 2×2 + 1 = 5 пять орбиталей, f-состоянию 2×3 + 1 = 7 семь орбиталей и т.д.

Состояние электрона в атоме, которое характеризуется определёнными значениями квантовых чисел n, l , m , т.е. определёнными размерами, формой и ориентацией в пространстве электронного облака, называется атомной электронной орбиталью .

Спиновое квантовое число S(m s) характеризует собственный механический момент электрона, связанный с вращением его вокруг своей оси. Оно имеет только два значения + и – .

Итак, подводя итоги изложенному выше, можно составить блок-схему «Квантовые числа» (таблица 2).

Таблица 2. Блок-схема «Квантовые числа»

Квантовое число Название Физический смысл Какие значения принимает
n(эн) главное квантовое число определяет общий запас энергии и размеры электронных орбиталей; характеризует энергетический уровень nÎN (теоретически) n 1 2 3 4 5 6 7 K L M N O P Q (практически)
l (эль) орбитальное (азимутальное) квантовое число определяет форму атомной орбитали характеризует энергетические подуровни l Î (теоретически) l 0 1 2 3 s p d f (практически)
m l (эм) магнитное квантовое число показывает ориентацию электронного облака в пространстве от –l до +l все целые числа, включая ноль при l =3 -3 -2 -1 0 +1 +2 +3

Поведение электронов в атомах подчиняется принципу запрета, В. Паули : в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа.

Согласно принципу Паули, на одной орбитали, характеризующейся определёнными значениями квантовых чисел n, l и m может находиться либо один электрон, либо два, но различающихся значением s.

Орбиталь с двумя электронами, спины которых антипараллельны (квантовая ячейка), схематически можно изобразить так:

Максимально в одном электронном слое может быть 2n 2 электронов, так называемая емкость электронного слоя.

В таблице 3 приведены значения квантовых чисел для различных состояний электрона, а так же указано максимальное число электронов, которое может находиться на том или ином энергетическом уровне и подуровне в атоме.

Таблица 3.

Квантовое состояние электронов, емкость энергетических уровней и подуровней.

Расположение электронов по слоям и орбиталям изображают в виде электронных конфигураций . При этом электроны размещаются согласно принципу минимальной энергии : наиболее устойчивое состояние электрона в атоме соответствует минимально возможному значению его энергии.

Конкретная реализация этого принципа отражается с помощью принципа Паули (см. стр. 8), правила Хунда, а также правила Клечковского.

Правило Хунда: в пределах энергетического подуровня электроны располагаются так, чтобы их суммарный спин был максимальный .

Правило Клечковского : орбитали заполняются электронами в порядке возрастания их энергии, которая характеризуется суммой (n + l). При этом, если сумма (n + l) двух разных орбиталей одинакова, то раньше заполняется орбиталь , у которой главное квантовое число меньше.

Последовательность заполнения электронных энергетических подуровней в атоме смотрите в таблице 4.

Таблица 4.

Порядок заполнения орбиталей по сумме главного и побочного квантовых чисел (n + l) .

n l n+l Орбиталь Порядок заполнения
1+0=1 1s
2+0=2 2+1=3 2s 2p
3+0=3 3+1=4 3+2=5 3s 3p 3d
4+0=4 4+1=5 4+2=6 4+3=7 4s 4p 4d 4f
5+0=5 5+1=6 5+2=7 5+3=8 5s 5p 5d 5f
6+0=6 6+1=7 6+2=8 6+3=9 6s 6p 6d 6f
7+0=7 7+1=8 7s 7p

Квантово-механическое описание электрона в атоме

Теория Бора позволила точно вычислить частоты в спектрах атома водорода и других одноэлектронных систем, т. е. таких ионов, как гелий, литий, берилий.

Однако при переходе к более сложным электронным системам - многоэлектронным - теория Бора оказалась недостаточной.

Поэтому возникла необходимость создания более общей теории, которая получила название квантовой механики. Такая теория, описывала поведение объектов микромира (например, электрона).

В1923-1927 гг были сформулированы основные положения квантовой механики.

Квантово-механическая теория содержит два основных положения.

1. Электрон имеет двойственную природу. Он обладает свойствами и частицы, и волны одновременно. Как частица электрон имеет массу и заряд, однако движение электронов - это волновой процесс. Электронам свойственно явле­ние дифракции (поток электронов огибает препятствие).

2. Положение электрона в атоме неопределенно. Это озна­чает, что невозможно одновременно точно определить и скорость электрона, и его координаты в пространстве.

Электрон, который движется с очень большой скоростью, может находиться в любой части пространства вокруг ядра, и различные моментальные его положения образуют так называе­мое электронное облако с неравномерной плотностью отрица­тельного заряда (рисунок). Форма и размеры электронного облака могут быть разными в зависимости от энергии электрона.

Для химической характеристики элемента, которая определяется состоянием электронов в электронной оболочке его атома, а также для объяснения связей, которые атом данного элемента может образовывать с другими атомами, необходимо знать:

- энергию электрона в атоме (точнее, энергию системы, со­стоящей из этого электрона, других электронов и ядра;

- форму образуемого данным электроном электронного облака.


Состояние электрона в атоме характеризуется набором четырех квантовых чисел.

По энергии электроны в атоме распределяются по энергети­ческим уровням и подуровням.

4.2.1. Главное квантовое число (п) характеризует энергетический уровень и определяет размер электронного облака, т. е. среднее расстояние электрона от ядра; принимает целочисленные значения 1, 2, 3, ..., п, которые соответствуют номеру энергетического уров­ня. Чем больше п, тем выше энергия электрона, следовательно, минимальная энергия соответствует первому уровню (п = 1).

4.2.2 Орбитальное или побочное квантовое число (l) характери­зует энергетический подуровень и определяет форму электронно­го облака; принимает целочисленные значения от 0 до (п - 1). Его значения обычно обозначаются буквами:


l = 0 1 2 3

Число возможных значений l соответствует числу возможных подуровней на данном уровне, равному номеру уровня (п).

При п = 1 l = 0 (1 значение)

п = 2 l = 0, 1 (2 значения)

п = 3 l = 0, 1, 2 (3 значения)

п = 4 l = 0, 1, 2, 3 (4 значения)

Энергия электронов на разных подуровнях одного уровня изменяется в зависимости от l следующим образом: каждому значению l соответствует определенная форма электронного об­лака: s - сфера, р - объемная восьмерка, d f - объемная че­тырех лепестковая розетка или более сложная форма (рис).

Таблица 1.1 – Форма электронных облаков

Состояние электрона в атоме описывается уравнением Шредингера. Решения уравнения Шредингера для одноэлектронного атома нумеруются тремя целочисленными параметрами, называемыми квантовыми числами, которые описывают всю совокупность сложных движений электрона в атоме. Квантовые числа изменяются дискретно (на единицу). Их всего четыре: главное (n ), орбитальное (l ), магнитное (m l ) и спиновое (m s ). Первые три характеризуют движение электрона в пространстве, а четвертое – вокруг собственной оси.


Главное квантовое число (n) . Определяет энергетический уровень электрона, его удаленность от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним. Электроны, обладающие близкими значениями энергии, образуют энергетический уровень. Он содержит строго определенное число электронов – максимально 2n 2 . Энергетические уровни подразделяются на s -, p -, d - и f - подуровни; их число равно номеру уровня.

Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и

l - подуровнем.

На первом энергетическом уровне (n = 1) орбитальное квантовое число l принимает единственное значение l = (n - 1) = 0. Форма обитали - сферическая; на первом энергетическом только один подуровень - 1s . Для второго энергетического уровня (n = 2) орбитальное квантовое число может принимать два значения: l = 0, s - орбиталь – сфера большего размера, чем на первом энергетическом уровне; l = 1, p - орбиталь – гантель. Таким образом, на втором энергетическом уровне имеются два подуровня – 2s и 2p . Для третьего энергетического уровня (n = 3) орбитальное квантовое число l принимает три значения: l = 0, s - орбиталь – сфера большего размера, чем на втором энергетическом уровне; l = 1, p - орбиталь – гантель большего размера, чем на втором энергетическом уровне; l = 2, d - орбиталь сложной формы.

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня – 3s , 3p и 3d .

Магнитное квантовое число (m l ) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -l до +l , включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.

Для s - орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.

Для p - орбитали (l = 1) – три равноценные ориентации в пространстве

(2l + 1 = 3): m = -1, 0, +1.

Для d- орбитали (l = 2) – пять равноценных ориентаций в пространстве

Многое в квантовой механике остается за гранью понимания, многое кажется фантастичным. То же относится и к квантовым числам, природа которых загадочна и сегодня. В статье рассказывается о понятии, видах и общих принципах работы с ними.

Общая характеристика

Целые или полуцелые квантовые числа у физических величин определяют всевозможные дискретные значения, характеризующие системы квантов (молекулу, атом, ядро) и элементарные частицы. Их применение тесным образом связано с существованием постоянной Планка. Дискретность, протекающих в микромире процессов, отражают квантовые числа и их физический смысл. Впервые их ввели для того, чтобы описать закономерности спектров атома. Но физический смысл и дискретность отдельных величин были раскрыты только в квантовой механике.
Набор, который определяет исчерпывающе состояние этой системы, получил название полного. Все состояния, отвечающие за возможные значения из такого набора, образуют полную систему состояний. Квантовые числа в химии со степенями свободы электрона определяют его в трех пространственных координатах и внутренней степенью свободы — спином.

Конфигурации электронов а атомах

В атоме располагаются ядро и электроны, между которыми действуют силы электростатической природы. Энергия будет увеличиваться по мере того, как уменьшается расстояние между ядром и электроном. Считается, что будет равна нулю в случае, если он удален от ядра бесконечно. Такое состояние используется как начало отсчета. Таким образом определяется относительная энергия электрона.

Электронная оболочка, является набором Принадлежность к одному из них выражается главным квантовым числом n.

Главное число

Оно относится к определенному уровню энергии с набором орбиталей, у которых схожие значения, состоящие из n= 1, 2, 3, 4, 5… Когда электрон переходит с одной на другую ступень, изменяется Следует учитывать, что не все уровни наполнены электронами. При заполнении оболочки атома, реализуется принцип наименьшей энергии. Его состояние в этом случае называют невозбужденным или основным.

Орбитальные числа

В каждом уровне имеются орбитали. Те из них, у которых сходная энергия, образуют подуровень. Такое отнесение производится с помощью орбитального (или как его еще называют - побочного) квантового числа l, которое принимает значения целых чисел от нуля и до n - 1. Так электрон, имеющий главное и орбитальное квантовые числа n и l, может равняться, начиная l = 0 и заканчивая l = n - 1.

Это показывает характер движения соответствующих подуровня и уровня энергии. При l = 0 и любом значении n, электронное облако будет иметь форму сферы. Ее радиус будет прямо пропорционален n. При l = 1 электронное облако примет форму бесконечности или восьмерки. Чем больше значение l, тем форма будет становиться сложнее, а энергия электрона — возрастать.

Магнитные числа

Ml является проекцией орбитального (побочного) на то или иное направление магнитного поля. Оно показывает пространственную ориентацию тех орбиталей, у которых число l одинаковое. Ml может иметь различные значения 2l + 1, от -l до +l.
Другое магнитное квантовое число называется спином — ms, который является собственным моментом числа движения. Чтобы понять это, можно вообразить вращение электрона как бы вокруг собственной оси. Ms может равняться -1/2, +1/2, 1.
Вообще для любого электрона абсолютное значение спина s = 1/2, а ms означает его проекцию на ось.


Принцип Паули: в атоме не может находиться двух электронов с 4-мя аналогичными квантовыми числами. Хотя бы одно из них должно быть отличным.
Правило составления формул атомов.
  1. Принцип минимальной энергии. По нему сначала заполняются уровни и подуровни, которые расположены ближе к ядру, по правилам Клечковского.
  2. Положение элемента указывает на то, как распределены электроны по энергетическим уровням и подуровням:
  • номер совпадает с зарядом атома и количеством его электронов;
  • периодический номер соответствует числу уровней энергии;
  • групповой номер совпадает с количеством в атоме;
  • подгруппа показывает их распределение.

Элементарные частицы и ядра

Квантовые числа в физике являются их внутренними характеристиками, которые определяют взаимодействия и закономерности превращений. Кроме спина s, это электрический заряд Q, который у всех элементарных частиц равен нулю или целому числу, отрицательному или положительному; барионный заряд В (в частице — ноль или единица, в античастице — ноль или минус один); лептонные заряды, где Le и Lm равны нулю, единице, а в античастице — нулю и минус единице; изотопический спин с целым или полуцелым числом; странность S и другие. Все эти квантовые числа применяются как к элементарным частицам, так и к атомным ядрам.
В широком смысле слова их называют физическими величинами, которые определяют движение частицы или системы и которые сохраняются. Однако совсем необязательно, что они принадлежат дискретному спектру всевозможных значений.