Верна ли инфляционная модель расширения вселенной. За и против космологической инфляции

Казалось маловероятным, что эхо событий, происходивших в первые миллисекунды рождения Вселенной, может дойти до нас. Однако это оказалось возможным.

Космология, строение Вселенной, прошлое, настоящее и будущее нашего мира - эти вопросы всегда занимали лучшие умы человечества. Для развития космологии, да и науки в целом, крайне важно понимание Вселенной как единого целого. Особую роль играют экспериментальная проверка абстрактных построений, подтверждение их наблюдательными данными, осмысление и сопоставление результатов исследований, адекватная оценка тех или иных теорий. Сейчас мы находимся на середине пути, который ведет от решения уравнений Эйнштейна к познанию тайны рождения и жизни Вселенной.

Очередной шаг на этом пути сделал создатель теории хаотической инфляции, воспитанник Московского государственного университета, ныне профессор Стэнфордского университета Андрей Дмитриевич Линде, внесший существенный вклад в понимание самой ранней стадии развития Вселенной. Многие годы он проработал в одном из ведущих академических российских институтов - Физическом институте им. Лебедева Академии наук (ФИАН), занимался следствиями современных теорий элементарных частиц, работая вместе с профессором Давидом Абрамовичем Киржницем.

В 1972 г. Киржниц и Линде пришли к выводу, что в ранней Вселенной происходили своеобразные фазовые переходы, когда различия между разными типами взаимодействий вдруг исчезали: сильные и электрослабые взаимодействия сливались в одну единую силу. (Единая теория слабого и электромагнитного взаимодействий, осуществляемых кварками и лептонами посредством обмена безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие), создана в конце 1960-х гг. Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом.) В дальнейшем Линде сосредоточился на изучении процессов на еще более ранних стадиях развития Вселенной, в первые 10 –30 с после ее рождения. Раньше казалось маловероятным, что до нас может дойти эхо событий, происходивших в первые миллисекунды рождения Вселенной. Однако в последние годы современные методы астрономических наблюдений позволили заглянуть в далекое прошлое.

Проблемы космологии

Рассматривая теорию Большого взрыва, исследователи сталкивались с проблемами, ранее воспринимавшимися как метафизические. Однако вопросы неизменно возникали и требовали ответов.

Что было тогда, когда ничего не было? Если Вселенная родилась из сингулярности, значит, когда-то ее не существовало. В «Теоретической физике» Ландау и Лифшица сказано, что решение уравнений Эйнштейна нельзя продолжить в область отрицательного времени, и потому в рамках общей теории относительности вопрос «Что было до рождения Вселенной?» не имеет смысла. Однако вопрос этот продолжает волновать всех нас.

Пересекаются ли параллельные линии? В школе нам говорили, что нет. Однако когда речь заходит о космологии, ответ не столь однозначен. Например, в замкнутой Вселенной, похожей на поверхность сферы, линии, которые были параллельными на экваторе, пересекаются на северном и южном полюсах. Так прав ли Евклид? Почему Вселенная кажется плоской? Была ли она такой с самого начала? Чтобы ответить на эти вопросы, необходимо установить, что представляла собой Вселенная на самом раннем этапе развития.

Почему Вселенная однородна? На самом деле это не совсем так. Существуют галактики, звезды и иные неоднородности. Если посмотреть на ту часть Вселенной, которая находится в пределах видимости современных телескопов, и проанализировать среднюю плотность распределения вещества в космических масштабах, окажется, что она одинакова во всех направлениях с точностью до 10 –5 . Почему же Вселенная однородна? Почему в разных частях Вселенной действуют одни и те же законы физики? Почему Вселенная такая большая? Откуда взялась энергия нужная для ее возникновения?

Сомнения возникали всегда, и чем больше ученые узнавали о строении и истории существования нашего мира, тем больше вопросов оставалось без ответов. Однако люди старались о них не думать, воспринимая большую однородную Вселенную и непересекающиеся параллельные линии как данность, не подлежащую обсуждению. Последней каплей, заставившей физиков пересмотреть отношение к теории ранней Вселенной, явилась проблема реликтовых монополей.

Существование магнитных монополей было предложено в 1931 г. английским физиком-теоретиком Полем Дираком. Если такие частицы действительно существует, то их магнитный заряд должен быть кратен некоторой заданной величине, которая, в свою очередь, определяется фундаментальной величиной электрического заряда. Почти на полвека эта тема была практически забыта, но в 1975 г. было сделано сенсационное заявление о том, что магнитный монополь обнаружен в космических лучах. Информация не подтвердилась, но сообщение вновь пробудило интерес к проблеме и способствовало разработке новой концепции.

Согласно новому классу теорий элементарных частиц, возникшему в 70-е гг., монополи могли появиться в ранней Вселенной в результате фазовых переходов предсказанных Киржницем и Линде. Масса каждого монополя в миллион миллиардов раз больше массы протона. В 1978–1979 гг. Зельдович, Хлопов и Прескилл обнаружили, что таких монополей рождалось довольно много, так что сейчас на каждый протон приходилось бы по монополю, а значит, Вселенная была бы очень тяжелой и должна была быстро сколлапсировать под своим собственным весом. Тот факт, что мы до сих пор существуем, опровергает такую возможность.

Пересмотр теории ранней Вселенной

Ответ на большую часть перечисленных вопросов удалось получить только после возникновения инфляционной теории.

Инфляционная теория имеет долгую историю. Первую теория такого типа предложил в 1979 году член-корреспондент РАН Алексей Александрович Старобинский. Его теория была довольно сложной. В отличие от последующих работ, она не пытались объяснить, почему Вселенная большая, плоская, однородная, изотропная. Тем не менее, она имела многие важные черты инфляционной космологии.

В 1980 г. сотрудник Массачусетского технологического института Алан Гус (Alan Guth ) в статье «Раздувающаяся Вселенная: возможное решение проблемы горизонта и плоскостности» изложил интересный сценарий раздувающейся Вселенной. Основным его отличием от традиционной теории Большого взрыва стало описание рождения мироздания в период с 10 –35 до 10 –32 с. Гус предположил, что в это время Вселенная была в состоянии так называемого «ложного» вакуума, при котором ее плотность энергии была исключительно велика. Поэтому расширение происходило быстрее, чем по теории Большого взрыва. Эта стадия экспоненциально быстрого расширения и была названа инфляцией (раздуванием) Вселенной. Затем ложный вакуум распадался, и его энергия переходила в энергию обычной материи.

Теория Гуса была основана на теории фазовых переходов в ранней Вселенной развитой Киржницем и Линде. В отличие от Старобинского, Гус ставил своей целью с помощью одного простого принципа объяснить, почему Вселенная большая, плоская, однородная, изотропная, а также почему монополей нет. Стадия инфляции могла бы решить эти проблемы.

К сожалению, после распада ложного вакуума в модели Гуса Вселенная оказывалась либо очень неоднородной, либо пустой. Дело в том, что распад ложного вакуума, как кипение воды в чайнике, происходил за счет образования пузырьков новой фазы. Для того чтобы выделяемая при этом энергия перешла в тепловую энергию Вселенной, необходимо было столкновение стенок огромных пузырей, а это должно было бы приводить к нарушению однородности и изотропности Вселенной после инфляции, что противоречит поставленной задаче.

Несмотря на то, что модель Гуса не работала, она стимулировала разработку новых сценариев раздувающейся Вселенной.

Новая инфляционная теория

В середине 1981 г. Линде предложил первый вариант нового сценария раздувающейся Вселенной, основывающийся на более детальном анализе фазовых переходов в модели Великого объединения. Он пришел к выводу, что в некоторых теориях экспоненциальное расширение не заканчивается сразу после образования пузырьков, так что инфляция может идти не только до фазового перехода с образованием пузырьков, но и после, уже внутри них. В рамках этого сценария наблюдаемая часть Вселенной считается содержащейся внутри одного пузырька.

В новом сценарии Линде показал, что разогрев после раздувания происходит за счет рождения частиц во время колебаний скалярного поля (см. ниже). Таким образом, соударения стенок пузырьков, порождающих неоднородности, стали не нужны, и тем самым была решена проблема крупномасштабной однородности и изотропности Вселенной.

Новый сценарий содержал два ключевых момента: во-первых, свойства физического состояния внутри пузырьков должен меняться медленно, чтобы обеспечивалось раздувание внутри пузырька; во-вторых, на более поздних стадиях должны происходить процессы, обеспечивающие разогрев Вселенной после фазового перехода. Спустя год исследователь пересмотрел свой подход, предложенный в новой инфляционной теории, и пришел к выводу, что фазовые переходы вообще не нужны, равно как переохлаждение и ложный вакуум, с которого начинал Алан Гус. Это был эмоциональный шок, т. к. предстояло отказаться от считавшихся истинными представлений о горячей Вселенной, фазовых переходах и переохлаждении. Необходимо было найти новый способ решения проблемы. Тогда была выдвинута теория хаотической инфляции.

Хаотическая инфляция

Идея, лежащая в основе теории хаотической инфляции Линде, очень проста, но для того чтобы ее объяснить, нужно ввести понятие скалярного поля. Существуют направленные поля - электромагнитное, электрическое, магнитное, гравитационное, но может быть по крайней мере еще одно - скалярное, которое никуда не направлено, а представляет собой просто функцию координат.

Самым близким (хотя и не точным) аналогом скалярного поля является электростатический потенциал. Напряжение в электрических сетях США - 110 В, а в России - 220 В. Если бы человек одной рукой держался за американский провод, а другой - за российский, его бы убила разница потенциалов. Если бы напряжение везде было одинаковым, не было бы разницы потенциалов и ток бы не тек. Так вот в постоянном скалярном поле разницы потенциалов нет. Поэтому мы не можем увидеть постоянное скалярное поле: оно выглядит как вакуум, который в некоторых случаях может обладать большой плотностью энергии.

Считается, что без полей такого типа очень трудно создать реалистичную теорию элементарных частиц. В последние годы были обнаружены практически все частицы, предсказанные теорией электрослабых взаимодействий, кроме скалярной. Поиск таких частиц - одна из основных целей огромного ускорителя, строящегося сейчас в ЦЕРНе, Шейцария.

Скалярное поле присутствовало практически во всех инфляционных сценариях. Гус предложил использовать потенциал с несколькими глубокими минимумами. Новой инфляционной теории Линде требовался потенциал с почти плоской вершиной, но позже, в сценарии хаотической инфляции, оказалось, что достаточно взять обычную параболу, и все срабатывает.

Рассмотрим простейшее скалярное поле, плотность потенциальной энергии которого пропорциональна квадрату его величины, подобно тому как энергия маятника пропорциональна квадрату его отклонения от положения равновесия:

Маленькое поле ничего не будет знать про Вселенную и станет колебаться вблизи своего минимума. Однако если поле будет достаточно велико, то оно будет скатываться вниз очень медленно, разгоняя Вселенную за счет своей энергии. В свою очередь, скорость движения Вселенной (а не какие-либо частицы) будет затормаживать падение скалярного поля.

Таким образом, большое скалярное поле приводит к большой скорости расширения Вселенной. Большая скорость расширения Вселенной мешает полю спадать и тем самым не дает плотности потенциальной энергии уменьшаться. А большая плотность энергии продолжает разгонять Вселенную со все большей скоростью. Этот самоподдерживающийся режим и приводит к инфляции, экспоненциально быстрому раздуванию Вселенной.

Чтобы объяснить этот удивительный эффект, необходимо совместно решить уравнение Эйнштейна для масштабного фактора Вселенной:

и уравнение движения для скалярного поля:

Здесь Н - так называемая постоянная Хаббла, пропорциональная плотности энергии скалярного поля массы m (эта постоянная на самом деле зависит от времени); G - гравитационная постоянная.

Исследователи уже рассматривали, как скалярное поле будет вести себя в окрестностях черной дыры и во время коллапса Вселенной. Но почему-то режим экспоненциального расширения не был найден. А следовало лишь написать полное уравнение для скалярного поля, которое в стандартном варианте (то есть без учета расширения Вселенной) выглядело как уравнение для маятника:

Но вмешался некоторый дополнительный член - сила трения, который был связан с геометрией; его сначала никто не учитывал. Он представляет собой произведение постоянной Хаббла на скорость движения поля:

Когда постоянная Хаббла была большой, трение тоже было велико, и скалярное поле уменьшалось очень медленно. Поэтому и постоянная Хаббла, являющаяся функцией скалярного поля, долгое время почти не менялась. Решение уравнения Эйнштейна с медленно меняющейся постоянной Хаббла описывает экспоненциально быстро расширяющуюся Вселенную.

Эта стадия экспоненциально быстрого расширения Вселенной и называется инфляцией.

Чем отличается этот режим от обычного расширения Вселенной заполненной обычным веществом? Предположим, что Вселенная, заполненная пылью, расширилась в 2 раза. Тогда ее объем вырос в 8 раз. Значит, в 1 см 3 стало в 8 раз меньше пыли. Если решить уравнение Эйнштейна для такой Вселенной, то окажется, что после Большого взрыва плотность вещества быстро падала, а скорость расширения Вселенной быстро уменьшалась.

То же самое было бы и со скалярным полем. Но пока поле оставалось очень большим, оно само себя поддерживало, как барон Мюнхгаузен, вытаскивающий себя из болота за косичку. Это было возможным за счет силы трения, которая была существенна при больших значениях поля. В соответствии с теориями нового типа Вселенная быстро расширялась, а поле почти не менялось; соответственно, не менялась и плотность энергии. Значит, расширение шло экспоненциально.

Постепенно поле уменьшилось, постоянная Хаббла тоже уменьшилась, трение стало маленьким, и поле начало колебаться, порождая элементарные частицы. Эти частицы сталкивались, обменивались энергией и постепенно пришли в состояние термодинамического равновесия. В результате Вселенная стала горячей.

Раньше считалось, что Вселенная была горячей с самого начала. К этому выводу приходили, изучая микроволновое излучение, которое интерпретировали как следствие Большого взрыва и последующего остывания. Затем стали думать, что сначала Вселенная была горячей, потом произошла инфляция, и после нее Вселенная вновь стала горячей. Однако, в теории хаотической инфляции первая горячая стадия оказалась ненужной. Но зачем нам понадобилась стадия инфляции, если в конце этой стадии Вселенная все равно стала горячей, как и в старой теории Большого взрыва?

Экспоненциальное расширение

Есть три простейшие модели Вселенной: плоская, открытая и замкнутая. Плоская Вселенная похожа на поверхность ровного стола; параллельные линии в такой Вселенной всегда остаются параллельными. Открытая Вселенная похожа на поверхность гиперболоида, а замкнутая Вселенная похожа на поверхность шара. Параллельные линии в такой Вселенной пересекаются на ее северном и южном полюсах.

Предположим, что мы живем в замкнутой Вселенной, которая сначала была маленькой как шарик. По теории Большого взрыва, она вырастала до порядочных размеров, но все равно оставалась относительно небольшой. А согласно инфляционной теории, крошечный шарик в результате экспоненциального взрыва за очень короткое время стал огромным. Находясь на нем, наблюдатель увидел бы плоскую поверхность.

Представим себе Гималаи, где существует множество различных уступов, расщелин, пропастей, ложбин, каменных глыб, т. е. неоднородностей. Но вдруг кто-то или что-то совершенно невероятным образом увеличил горы до гигантских размеров, или мы уменьшились, как Алиса в Стране чудес. Тогда, находясь на вершине Эвереста, мы увидим, что она совершенно плоская - ее как бы растянули, и неоднородности перестали иметь какое-либо значение. Горы остались, но для того чтобы подняться хотя бы на один метр, нужно уйти невероятно далеко. Таким образом, может быть решена проблема однородности. Этим же объясняется, почему Вселенная плоская, почему параллельные линии не пересекаются и почему не существуют монополи. Параллельные линии могут пересекаться, и монополи могут существовать, но только так далеко от нас, что мы не можем этого увидеть.

Возникновение галактик

Маленькая Вселенная стала колоссальной, и все стало однородным. Но как же быть с галактиками? Оказалось, что в ходе экспоненциального расширения Вселенной маленькие квантовые флуктуации, существующие всегда, даже в пустом пространстве, из-за квантово-механического принципа неопределенности, растягивались до колоссальных размеров и превращались в галактики. Согласно инфляционной теории, галактики - это результат усиления квантовых флуктуаций, т. е. усиленный и замерзший квантовый шум.

Впервые на эту поразительную возможность указали сотрудники ФИАН Вячеслав Федорович Муханов и Геннадий Васильевич Чибисов в работе, основанной на модели, предложенной в 1979 г. Старобинским. Вскоре после этого, аналогичный механизм был обнаружен в новом инфляционном сценарии и в теории хаотической инфляции.

Небо в крапинку

Квантовые флуктуации приводили не только к рождению галактик, но и к возникновению анизотропии реликтового излучения с температурой примерно 2,7 К, приходящего к нам из дальних областей Вселенной.

Исследовать реликтовое излучение ученым помогают современные искусственные спутники Земли. Самые ценные данные удалось получить с помощью космического зонда WMAP (Wilkinson Microwave Anisotropy Probe ), названного так в честь астрофизика Дэвида Уилкинсона (David Wilkinson ). Разрешающая способность его аппаратуры в 30 раз больше, чем у его предшественника - космического аппарата COBE.

Ранее считалось, что температура неба всюду равна 2,7 К, однако WMAP смог измерить ее с точностью до 10 –5 К с высокой угловой разрешающей способностью. Согласно данным, полученным за первые 3 года наблюдений, небо оказалось неоднородным: где-то горячее, а где-то холоднее. Простейшие модели инфляционной теории предсказали рябь на небе. Но пока телескопы не зафиксировали его пятнистость, наблюдалось только трехградусное излучение, служившее мощнейшим подтверждением теории горячей Вселенной. Теперь же выяснилось, что теории горячей Вселенной не хватает.

Удалось получить фотографии раздутых квантовых флуктуаций, которые появились спустя 10 –30 с после рождения мироздания и сохранились до наших дней. Исследователи не только обнаружили пятнистость неба, но и изучили спектр пятен, т. е. интенсивность сигнала на разных угловых направлениях.

Результаты проведенных с помощью WMAP высокоточных измерений поляризации излучения подтвердили теорию расширения Вселенной и позволили установить, когда произошла ионизация межгалактического газа, вызванная самыми первыми звездами. Полученная со спутника информация подтвердила положение инфляционной теории о том, что мы живем в большой плоской Вселенной.

На рисунке красной линией показано предсказание инфляционной теории, а черные точки соответствуют экспериментальным данным WMAP. Если бы Вселенная не была плоской, то пик графика находился бы правее или левее.

Вечная и бесконечная

Посмотрим еще раз на рисунок, показывающий простейший потенциал скалярного поля (см. выше). В области, где скалярное поле мало, оно осциллирует, и Вселенная не расширяется экспоненциально. В области, где поле достаточно велико, оно медленно спадает, и на нем возникают маленькие флуктуации. В это время происходит экспоненциальное расширение и идет процесс инфляции. Если бы скалярное поле было еще больше (на графике отмечено голубым цветом), то за счет огромного трения оно бы почти не уменьшалось, квантовые флуктуации были бы огромны, и Вселенная могла стать фрактальной.

Представим, что Вселенная быстро расширяется, а в каком-то месте скалярное поле, вместо того чтобы катиться к минимуму энергии, из-за квантовых флуктуаций подскакивает вверх (см. выше). В том месте, где поле подскочило, Вселенная расширяется экспоненциально быстрее. Низкорасположенное поле вряд ли подскочит, но чем выше оно будет находиться, тем больше вероятность такого развития событий, а значит, и экспоненциально большего объема новой области. В каждой из таких ровных областей поле тоже может подскочить наверх, что приводит к созданию новых экспоненциально растущих частей Вселенной. В результате этого, вместо того чтобы быть похожей на один огромный растущий шар, наш мир становится похожим на вечно растущее дерево, состоящее из многих таких шаров.

Инфляционная теория дает нам единственное известное сейчас объяснение однородности наблюдаемой части Вселенной. Парадоксальным образом эта же теория предсказывает, что в предельно больших масштабах наша Вселенная абсолютно неоднородна и выглядит как огромный фрактал.

На рисунке схематически показано, как одна раздувающаяся область Вселенной порождает все новые и новые ее части. В этом смысле она становится вечной и самовосстанавливающейся.

Свойства пространства-времени и законы взаимодействия элементарных частиц друг с другом в разных областях Вселенной могут быть различны, равно как и размерности пространства, и типы вакуума.

Этот факт заслуживает более детального объяснения. Согласно простейшей теории с одним минимумом потенциальной энергии, скалярное поле катится вниз к этому минимуму. Однако более реалистические версии допускают множество минимумов с разной физикой, что напоминает воду, которая может находиться в разных состояниях: жидком, газообразном и твердом. Разные части Вселенной также могут пребывать в разных фазовых состояниях; это возможно в инфляционной теории даже без учета квантовых флуктуаций.

Следующим шагом, основанным на изучении квантовых флуктуаций, является теория самовосстанавливающейся Вселенной. В этой теории учитывается процесс постоянного воссоздания раздувающихся областей и квантовые скачки из одного вакуумного состояния в другое, перебирающие разные возможности и размерности.

Так Вселенная становится вечной, бесконечной и многообразной. Вся Вселенная никогда не сколлапсирует. Однако это не означает, что отсутствуют сингулярности. Напротив, значительная часть физического объема Вселенной все время находится в состоянии, близком к сингулярному. Но так как различные объемы проходят его в разное время, единого конца пространства-времени, после которого все области исчезают, не существует. И тогда вопрос о множественности миров во времени и в пространстве приобретает совершенно другое звучание: Вселенная может самовоспроизводиться бесконечно во всех своих возможных состояниях.

Это утверждение, в основе которого лежали работы Линде сделанные им в 1986 году, прибрело новое звучание несколько лет назад, когда специалисты по теории струн (лидирующий кандидат на роль теории всех фундаментальных взаимодействий) пришли к выводу что в этой теории возможно 10 100 –10 1000 различных вакуумных состояний. Эти состояния отличаются за счет необычайного разнообразия возможного устройства мира на сверхмалых расстояниях.

В совокупности с теорией самовосстанавливающейся инфляционной Вселенной, это означает, что Вселенная во время инфляции разбивается на бесконечно много частей с невероятно большим количеством разных свойств. Космологи называют этот сценарий теорией вечной инфляционной мультивселенной (multiverse ), а специалисты по теории струн называют это струнным ландшафтом.

25 лет назад инфляционная космология выглядела как нечто промежуточное между физической теорией и научной фантастикой. За прошедшее время многие предсказания этой теории были проверены, и она постепенно приобрела черты стандартной космологической парадигмы. Но успокаиваться еще рано. Эта теория и сейчас продолжает быстро развиваться и меняться. Основная проблема - разработка моделей инфляционной космологии основанных на реалистических вариантах теории элементарных частиц и теории струн. Этот вопрос может быть темой отдельного доклада.

Общепризнанная теория Большого Взрыва имеет много проблем в описании ранней Вселенной. Даже если оставить в стороне странность сингулярного состояния, не поддающуюся никакому физическому объяснению, пробелов не становится меньше. И с этим приходится считаться. Иногда маленькие неувязки приводят к отрицанию всей теории. Поэтому обычно появляются дополняющие и вспомогательные теории, призванные прояснить узкие места и разрулить напряженность ситуации. В данном случае теория инфляции играет эту роль. Итак, посмотрим в чем проблема.

Вещество и антивещество имеют равные права на существование. Тогда как объяснить, что Вселенная практически полностью состоит из вещества?

По фоновому излучению установлено, что температура во Вселенной примерно одинакова. Но отдельные ее части не могли находиться в контакте при расширении. Тогда как установилось тепловое равновесие?

Почему масса Вселенной именно такова, что может замедлить и остановить хаббловское расширение?

В 1981 году американский физик и космолог, доктор философии Алан Харви Гут, адьюнкт Массачусетского университета, занимающийся математическими проблемами физики элементарных частиц, предположил, что через десять в минус тридцать пятой степени секунды после Большого Взрыва сверхплотное и горячее вещество, состоящее в основном из кварков и лептонов, претерпело квантовый переход, подобный кристаллизации. Произошло это при отделении сильных взаимодействий из единого поля. Алан Гут смог показать, что при разделении сильных и слабых взаимодействий произошло скачкообразное расширение, как в замерзающей воде. Это расширение, во много раз быстрее хаббловского, назвали инфляционным.

Примерно за десять в минус тридцать второй степени секунды Вселенная расширилась на 50 порядков - была меньше протона, стала размером с грейпфрут. Кстати, вода расширяется всего на 10%. Это стремительное инфляционное расширение решает две проблемы из трех обозначенных. Расширение нивелирует кривизну пространства, которая зависит от количества материи и энергии в ней. И не нарушает теплового равновесия, успевшего сложиться к началу инфляции. Проблему антивещества объясняют тем, что на начальном этапе формирования возникло на несколько обычных частиц больше. После аннигиляции образовался кусочек обычной материи из которой сформировалось вещество Вселенной.

Инфляционная модель образования Вселенной.

Протовселенная была заполнена скалярным полем. Вначале оно было однородным, но возникли квантовые флуктуации и в нем возникли неоднородности. При накоплении этих неоднородностей происходит разряжение с созданием вакуума. Скалярное поле поддерживает напряженность и образовавшийся пузырек все увеличивается, раздуваясь во все стороны. Процесс идет по экспоненте, за весьма короткое время. Здесь определяющую роль играют начальные характеристики поля. Если сила постоянна во времени, то за промежуток времени десять в минус тридцать шестой степени секунды начальный пузырек Вакуума может расшириться в десять в двадцать шестой степени раз. И это согласуется с теорией относительности, речь идет о движении самого пространства в разные стороны.

В итоге получается, что Взрыва не было, было очень быстрое надувание и расширение пузырька нашей Вселенной. Термин инфляция от английского inflate - накачивать, раздувать. Но расширялся вакуум, откуда взялись энергия и материя, которые образовали звезды, галактики? И почему считают, что Вселенная была горячей? Может ли пустота быть высокотемпературной?

При растягивании пузырька Вселенной, он начинает накапливать энергию. Вследствие фазового перехода, температура резко повышается. По окончании периода инфляции Вселенная оказывается сильно нагретой, полагают, благодаря сингулярности. Энергию вакууму сообщила изогнутость пространства. По Эйнштейну гравитация есть не сила притяжения двух масс, а изогнутость пространства. Если пространство изогнуто, в нем уже есть энергия, если даже нет массы. Любая энергия изгибает пространство. То, что расталкивает галактики в разные стороны и что мы называем темной энергией, и есть часть скалярного поля. И искомое поле Хиггса порождено этим скалярным полем.

К числу критиков теории инфляции принадлежит сэр Роджер Пентроуз, английский математик, специалист в области общей теории относительности и квантовой теории, заведующий кафедрой математики Оксфордского университета. Он считал, что все рассуждения об инфляции надуманы и не подлежат доказательству. То есть налицо проблемы начальных значений. Как доказать, что в ранней Вселенной неоднородности были таковы, что смогли породить однородный мир, наблюдаемый сейчас? А если изначально была большая кривизна, то ее остаточные явления должны наблюдаться и в настоящее время.

Однако, проведенные исследования в рамках Supernova Cosmology Project показали, что в настоящее время наблюдается инфляция на поздней стадии эволюции Вселенной. Фактор, вызывающий это явление, получил название темной энергии. В настоящее время в теорию инфляции внесены дополнения Линде в виде хаотической инфляции. Не следует спешить сбрасывать ее со счетов, теория инфляционной Вселенной еще послужит космологии.

Информация:

Окунь Л.Б." Лептоны и кварки", М., Наука, 1981

www.cosmos-journal.ru

Эпиграф:
И целого мира мало!

Могу поспорить, среди читающих эти строки нет ни одного человека, который бы ни разу в жизни не слышал о теории Большого Взрыва. Допускаю, что на Земле попадаются подобные персонажи - крестьянин из заброшенной деревушки в горах Тибета, туземец племени Тонга–Тонга, мормон из Юты, наверняка такие где–то, да встречаются. Однако если вы умеете читать, имеете доступ в Интернет и смогли, пусть случайно, зайти в этот блог - могу гарантировать, вы обязательно что–нибудь хоть краем уха, но слышали о теории Большого Взрыва.

В этом посте я расскажу о текущем научном понимании этой теории, текст получился немаленький, но обещаю, сегодня вы узнаете что–то новое, то, что раньше не знали, и даже не задумывались.

Прежде всего, забавно, но мало кто задумывался, в чем же, собственно, заключается теория Большого Взрыва? Попробуйте вот прямо сейчас покрутить в голове факты, что вы знаете о ней, а потом я изложу, как она звучит на самом деле .

Попробовали? Ну, еще 20 секунд на размышления...

Итак. Теория Большого Взрыва утверждает, что раньше наша Вселенная была маленькая и горячая, с тех пор она расширяется и остывает. Точка. Больше ничего в данной теории нет, не выдумывайте лишнего.

Удивительно, но в классической теории Большого Взрыва нет самого важного - нет собственно Большого Взрыва. Нигде не упоминается, что это был за "взрыв", что же там взорвалось, куда взорвалось, как и почему.

Следуя основному тезису, что "сначала наша Вселенная была маленькая и горячая" , можно мысленно растянуть его еще дальше (хотя обращаю внимание, это уже НЕ ЕСТЬ теория Большого Взрыва, это именно попытки растянуть границы применимости в область догадок и фантазий) и придти к предположению, что еще раньше вся Вселенная была собрана в одну точку, называемую точкой сингулярности , которая позже взорвалась по каким–то своим внутренним причинам.

Замечу, что теория Большого Взрыва ("раньше Вселенная была маленькая и горячая, а потом стала большая и холодная") сегодня не является теорией , как таковой. Можно считать, что это вполне себе научно установленный факт , подтверждаемый огромным количеством наблюдений, сегодня нет ни одного стоящего ученого, который бы сомневался в нем. Но вот насчет точки сингулярности (лежащей, повторюсь, вне пределов границ применимости теории Большого Взрыва) у ученых не только нет единого мнения, у них вообще никакого мнения нет.

Никто не имеет ни малейшего понятия, что это за "сингулярность" . Сингулярность это вообще плейсхолдер (слово–заменитель) фразы "я не знаю". То есть на вопрос "равны ли классы P и NP?", или "жив ли кот Шредингера?", или даже "как звучит хлопок одной ладони?" можно смело отвечать "Сингулярность!".
Не ошибешься.

Теория Большого Взрыва была сформулирована в 20–х годах прошлого столетия, и вот уже с тех пор целый век ученые только и занимаются тем, что пытаются понять, в чем же суть сингулярности, и нельзя ли как–нибудь от нее избавиться?

Основная проблема сингулярности - в ней происходит натуральное деление на ноль, причем в самом прямом смысле. Все формулы превращаются в чепуху, 3 становится равно 5, и одна бесконечность начинает наползать на другую. А это конец физики, конец науки, дальше живут лишь драконы–ЕГГОГи, и где–то из складок пространства ехидно подмигивает сам Всевышний.

Много разных способов, подходов и хитростей предлагалось на замену сингулярности, лучше всех покуда получилось у американского физика Алана Гута в 1981–м году. Как всегда в очередной раз напомню, наука дело коллективное, Гут, как и все предшественники, вскарабкался на плечи гигантов, но в этом коротком тексте на пальцах™ я не стану перечислять всех предшественников, коллег и оппонентов, упомяну лишь одну фамилию, того заслуживающую - Алексей Старобинский , который высказывал похожие идеи ранее, но слава первооткрывателя закрепилась именно за Аланом Гутом.

Гут предложил сделать хитрый финт ушами. Внимательно следите за руками и ушами, сейчас я покажу вам фокус. Давайте мысленно(!) достанем из всех текстов слово "сингулярность" и положим вместо него фразу "скалярное поле". Обращаю ваше внимание, на данном этапе ничего не поменялось, термин "скалярное поле" продолжает являться полным аналогом () "сингулярности", которая в свою очередь, как мы помним, лишь заменитель фразы "я не знаю".

Что это за "скалярное поле", каковы его характеристики, откуда оно появилось, что вообще, черт возьми, происходит - все так же нет ответов. Покуда "скалярное поле", или как его еще называют в английской традиции "поле инфлатонов" (потому что "инфляция" же), это лишь результат мысленного эксперимента в попытках уйти от сингулярности и придти к чему–то еще. Пока это не более чем замена шила на мыло. Но будем настоящими учеными, доведем наш мысленный эксперимент до конца, и посмотрим, что же получилось в итоге.

Итак, по Гуту, первоначальная протоВселенная была безвидна и пуста, в ней ничего не было и ничего не происходило, она была бесконечна, или как минимум очень–очень–очень большая, гораздо больше, чем современная Обозримая Вселенная , и вся она была заполнена этим самым скалярным полем , про которое нам ничего не известно, кроме того, что это какое–то поле, и что оно как ясно из названия - скалярное.

Не стану грузить читателя определением "скаляра", это не особо нужно в рамках данного поста, совсем просто и на пальцах™ можно считать, что в этом поле присутствует какая–то "напряженность" . Поле несет в себе некую энергию, как грозовая туча несет в себе готовую пролиться дождем воду.

Чем эта ситуация лучше предыдущей с сингулярностью с точки зрения физики? Да всем! Пусть мы не знаем ни одной характеристики данного поля, пусть мы понятия не имеем, что там была за напряженность и откуда она взялась, но это вам не деление на ноль! Теперь у нас есть решаемая задача, можно начать писать какие–то формулы (сами понимаете, настоящего ученого мёдом не корми, дай только каких–нибудь трехэтажных формул нафигачить), в которые возможно подставлять начальные условия и коэффициенты, делить и умножать, вычислять, что получиться в итоге, и потом сравнивать с результатами непосредственных наблюдений и экспериментов.

Да, звучит смешно и даже как–то глупо, натуральное "шило на мыло", но это оказался реальный прорыв. Это шаг вперед по сравнению с тотальным "я не знаю", начертанным на бетонной стене, это уже серьезная заявка на успех, на обход, на подкоп или хотя бы на лестницу.

Однако самое смешное, что фокус со скалярным полем у Алана Гута удался, а вот формулы как раз не заладились. Алан принес в науку идею скалярного поля и его инфляции (о механизме инфляции чуточку позже), но верно описать свои мысли сухим языком математики у него не получилось. Ряды расходились, все снова начинало делиться на ноль, короче полный провал.

И лишь через год подпритухший факел инфляционной модели высоко поднял Андрей Линде , советский ученый, временно проживающий в США и возглавляющий кафедру физики в Стэнфордском университете.

Он исправил ошибки теории Алана Гута, заставил формулы сходиться и давать предсказуемый и проверяемый результат, но попутно открыл настоящий ящик Пандоры, о котором упомяну в самом конце поста, оставлю его на сладкое.

Суть инфляционной модели Вселенной (коротенько так, образно и туманно) такова:

Мы помним, что протоВселенная, предшественница нашей Вселенной, была заполнена неким скалярным полем, о котором нам ничего не известно, кроме наличия самого поля и его "скалярности". Скалярное, не скалярное, но принципы квантовой механики никто не отменял! Вот уже сто лет, как никому, включая самого Альберта Эйнштейна, ни разу не удавалось принципы квантовой механики. Что означает, что даже если это поле изначально было однородным (а оно, в принципе, не обязательно должно быть изначально однородным), все равно со временем, под действием квантовых флуктуаций в нем таки появятся мелкие неоднородности, которые по указанию его величества Квантового Случая, могут накладываться друг на друга, образовывая неоднородности крупные.

Ну, крупные–то по квантовым меркам. Все равно это все еще милли–милли–милли–...(и еще 10 раз милли–) Джоули, метры и килограммы, ни о какой нашей Вселенной, с триллионами звезд и галактик речь пока не идет.

И тут внезапно выясняется, что поле у нас не абы какое, а весьма хитрое! В обычном поле, в котором нет трения, неоднородности просто рано или поздно "замкнутся и коротнут " сами на себя. Например возьмем известное и понятное электромагнитное поле. Если где–то возникла разность потенциалов, которая продолжает увеличиваться, то рано или поздно, но закоротит обязательно. Пробежит разряд, возникнет мини–искра (или мега–молния, если разность потенциалов была большая как в грозу) и неоднородность нивелируется.

Кстати, во–первых, внимательный читатель со звездочкой (*) , тут должен заявить, что электромагнитное поле, не есть поле скалярное, а как раз наоборот - векторное поле, причем весьма замороченное. Но в данном конкретном примере это роли вообще не играет. И в том и в том поле коротнет практически одинаково, по одному сценарию. Ну, и во–вторых, нельзя сказать, что прям непременно тут же коротнет, заряды могут накапливаться годами и даже миллионами лет. Все зависит от тысячи разных условий, но если прождать достаточно долго (например вечность), то короткое замыкание неоднородностей непременно случится. Естественно, это все не более чем аналогия, причем в этом месте не очень прямая, я лишь пытаюсь на пальцах ™ объяснить поведение непонятного скалярного поля на примере понятного электромагнитного.

Так вот, в электромагнитном поле практически нет трения , если можно так выразиться. У электронов есть конечная скорость передвижения и они испытывают прямое сопротивление среды, которое мы и называем сопротивлением электрического тока , но изменения поля передаются со скоростью самого электромагнитного поля, т.е. со скоростью света. Если отойти от темы слишком далеко, то читатель с двумя звездочками (**) должен знать, что даже полный и абсолютный вакуум имеет некий аналог "сопротивления" электромагнитным волнам, но это уже совсем глубокие дебри силы Казимира и прочих эффектов вакуумных флуктуаций, нам туда пока не стоит углубляться, хоть такие посты из серии на пальцах ™ планируются в неизвестном, но обозримом будущем.

Короче, можно сказать, что у электромагнитного поля нет внутреннего трения, или оно пренебрежимо мало. Ну, коротнуло и коротнуло в мгновение ока. Если наложить аналогию на аналогию, можно сказать, что замыкание электромагнитного поля это словно бы гора, находящаяся в области высокого потенциала, на которой лежит мячик, а область низкого потенциала это яма под горой, куда этот мячик в конце концов упадет. Так как трения почти нет, мяч несется вниз со всей скорости, фактически со скоростью света. Бац, и упал.

При падении обязательно выделится какая–то энергия, которая пойдет на нагревание окружающего пространства, земли и мячика. В случае электромагнитного поля происходит натуральный разряд поля, т.е. молния . Если дело происходило под водой (а электрические разряды могут коротить и под водой), то в этом месте образуется крохотный пузырек воздуха, когда вода распадется на составляющие ее кислород и водород. Разряд в буквальном смысле молниеносный, разность потенциалов падает быстро, пузырек воздуха получается совсем маленький.

Теперь вернемся к нашему гипотетическому скалярному полю. Так как оно все еще гипотетическое, фантазировать про него и его свойства можно как угодно. Предположим, что в этом поле существует внутреннее трение и оно очень большое. Очень–очень большое. Перекладываясь на аналогию с мячом, он будет падать с горы не в вакууме или там воздухе, а в очень вязкой и тягучей жидкости, например в подсолнечном масле или мёде.

Стало быть сила тяжести тянет мячик вниз, а сила трения мешает ему быстро падать и тянет его назад вверх. И вместо того, чтобы стремительно нестись к подножью (а мы помним, что это лишь аналогия того, как быстро разряжается неравномерность напряженности поля ), мячик плавно, практически с постоянной скоростью, т.е. почти равномерно опускается вниз. Разряжение скалярного поля ответственно за создание вакуума, т.е. нашего родимого пространства–времени, падение его потенциала словно бы надувает воздушный шарик, только вместо воздуха там вакуум, а вместо шарика - наша Вселенная. Если бы все происходило без трения, напряженность скалярного поля упала бы очень быстро и у нас получился бы маленький пузырек вакуума в огромном безбрежном океане протоВселенной. Но трение (а по сути само скалярное поле) не дает напряженности падать быстро, мешает и тянет само себя назад . Из–за этого, в то время как напряженность медленно снижается, фактически стоит на месте, "сила надувания", т.е. сила, которая распирает образующийся вакуум во все стороны остается постоянной, и продолжает накачивать с прежним усилием, не смотря на то, что размеры новорожденной Вселенной все увеличиваются и увеличиваются.

Ученые знают, а вы можете мне на слово поверить, а можете проверить и погуглить, что в данном случае у нас получается уравнение, решением которого является экспонента. Т.е. получается натуральное экспоненциальное расширение Вселенной . В миллиарды миллиардов миллиардов раз. За не очень большой, весьма короткий промежуток времени. Все зависит от того, какие коэффициенты у нас входят в экспоненту, т.е. какова была начальная напряженность скалярного поля, какова была сила трения и т.д.

Расчеты показывают, если "сила распирания" не падает со временем, за какие–то 10 –36 доли секунды новая с пылу с жару Вселенная (т.е. этот изначальный пузырек вакуума) может расшириться в 10 26 раз. Да, это на многие порядки превосходит скорость света, но тут нет никакого парадокса. Теория Относительности запрещает любой материи передвигаться в пространстве быстрее скорости света, но совсем не запрещает самому пространству (т.е. пустоте) расширяться в стороны с любой скоростью.

Выходит, что никакого Большого Взрыва как "взрыва" вовсе не было. Было быстрое, очень быстрое, взрывообразно или экспоненциально быстрое "надувание и расширение" пузырька нашей Вселенной, именно что инфляция , от английского слова inflate - "накачивать", "раздувать".

Но тут хитрый момент! Расширяется–то вакуум, т.е. абсолютная пустота, откуда же взялась вся та энергия и материя, что составляет сейчас все наши звезды, галактики и прочий контент современного космоса? И почему Вселенная была раньше горячая, чему там быть горячему, пустому вакууму что–ли?

Здесь опять сложная фиговина с зубодробильными формулами, постараюсь разъяснить ее при помощи чего бы вы думали? Аналогии на пальцах™ , ну конечно!

Вы знаете, что если у нас что–то очень быстро расширяется, то это что–то так же стремительно теряет энергию, в смысле так же быстро размазывает ее по всему расширяющемуся объему, и в каждой отдельной точке или кубометре пространства энергии становится все меньше и меньше. Это вам не хухры–мухры, это между прочим первое начало термодинамики!

У нас же получается наоборот. Если очень быстро растянуть пузырек Вселенной, он начнет мгновенно накапливать энергию. Ведь гравитационная энергия всегда идет со знаком минус. Если разнести в пространстве два тела, или, скажем, поднять тяжелый груз над поверхностью Земли, потенциальная, а следовательно и общая энергия системы увеличится ! А так как все происходит быстро (напомню, очень–очень–очень–... и еще 26 раз очень быстро), то в случае с каким–нибудь газом, например воздухом, он резко охлаждается, образует туман и находящийся в нем водяной пар выпадает в осадок, образуя натуральный снег или лед. Все видели, если открыть клапан баллона со сжиженным газом, баллон тут же покрывается инеем.

А в случае со Вселенной, наоборот температура резко повышается, случается фазовый переход и высвободившаяся энергия "выпадает в осадок" в виде собственно энергии (фотонов) и материи (электронов, протонов и прочих элементарных частиц). Вот почему по окончанию инфляции, которая начиналась не такой уж и горячей, Вселенная быстро разогревается до беспредельных энергий и температур, которые раньше считалось вырвались наружу прямо из точки сингулярности. А дальше, когда мячик долетел до дна ямы и период экспоненциального расширения закончился, все продолжается по старому сценарию классического Большого Взрыва, Вселенная расширяется, но уже не экспоненциально, а медленно так, по инерции. Но теперь все это выходит без самого Большого Взрыва и его сингулярности.

Звучит непривычно, звучит каким–то обманом, но если задуматься, все логично - увеличившаяся потенциальная энергия, энергия гравитации со знаком минус в точности компенсируется энергией кинетической, энергией движения (температурой) и энергией покоя (массой) "выпавших в осадок" частиц материи. Общая энергия Вселенной продолжает оставаться равна нулю, минус сто да плюс сто дает в результате ноль. Как минус миллиард и плюс миллиард.

Если быть до конца точным, там не совсем ровно ноль получается в итоге, ведь напряженность первоначального скалярного поля, с которого все началось, в этом месте таки упала почти до нуля. Но абсолютная величина данного падения, какие–то там доли Джоуля (или в чем там у нас измеряется напряженность поля инфлатонов? ), все равно остается в пределах пусть и крупных, но все еще квантовых эффектов. Это не идет ни в какое сравнение с трилли–миллиардами (точнее 10 50 и так далее) килограммами народившейся материи и такими же порядками запасенной гравитационной энергии. Мышь родила гору, в прямом смысле этого слова. Точнее гору и яму рядом для равновесия.

Еще раз для понятности повторю предыдущий абзац немного другими словами. Когда в результате падения напряженности скалярного поля в нем появился маленький пузырек нашего пространства–времени, т.е. обычного вакуума, это пространство–время оказывается "немножечко погнутым". Почему? Потому что именно так любая энергия влияет на пространство. Ньютон думал, что гравитация есть сила притяжения двух масс. А Эйнштейн сказал, что гравитация есть лишь гнутость пространства. Если пространство "гнутое" в нем уже запасена какая–то гравитационная энергия, даже если это пространство абсолютно пустое и в нем нет массы. Что у нас гнет пространство? Его гнет энергия (правильнее говорить - тензор энергии–импульса). Масса это тоже энергия, много энергии, но можно обойтись и вовсе без массы, вообще любая энергия гнет пространство. Когда под действием падения энергии скалярного поля "надулся маленький пузырик вакуума", в нем уже есть энергия скалярного поля, вакуум в нем уже "гнутый". Если этот пузырь быстро растянуть в стороны, гравитационная энергия резко возрастет, что вызовет "выпадение в осадок" массы, которая с одной стороны добавляет Вселенной энергии (т.к. E=mc 2) со знаком плюс, а с другой - добавляет во Вселенную гравитации этой массы со знаком минус, а значит и дальше продолжится гонка–состязание горы и мыши.

Да, напоминаю, если кто позабыл, что все это происходит в рамках мысленного эксперимента по избавлению от сингулярности! Это пока всего лишь гимнастика ума, наукой здесь еще не очень пахнет, хотя сам мысленный эксперимент - обязательный атрибут научного метода. Чтобы подняться в ранге хотя бы до гипотезы, не говоря уже о теории, нужно много пройти и многое объяснить.

Повторяю, мы все еще в процессе обмена шила на мыло. Мы никуда не ушли от непонятной первоначальной сингулярности, всего–то назвали ее немного по другому и в результате встали с ног на голову. Однако конкретные детали теории инфляционного расширения Вселенной, в отличие от классической теории Большого Взрыва, позволяют найти объяснения многим наблюдаемым феноменам (проблема начальных условий, проблема однородности и изотропности наблюдаемой Вселенной, проблема плоскости наблюдаемой Вселенной, проблема с магнитными монополями и много чего еще), перед которыми сингулярность Большого Взрыва пасовала. Это делает инфляционную модель весьма привлекательной, но совершенно не доказывает ее и не объявляет верной. В состоянии "молодой и перспективной", но "недоказанной и немного фантастической" теории инфляционная модель находилась с 80–х годов последнего века прошлого тысячелетия (это я так "30 лет назад" замысловато сказал), покуда в 2014 году не появились первые, все еще робкие, неподтвержденные и весьма косвенные улики , в смысле результаты экспериментов ее подтверждающие. А здесь уже не просто заявка, тут получается реальный успех!

Что это за эксперименты, каковы их результаты, что такое "гравитационные волны" как они связаны с инфляцией и почему их открытие тянет на нобелевскую премию, которую, я думаю, Алану Гуту и Андрею Линде таки вручат в конечном итоге, а так же все прочие технические подробности собираются в кучу и будут описаны особо, во второй части данного повествования, они тянут на полноценный отдельный пост. Здесь я лишь изложил суть инфляционной теории, остановив ее на этапе 2013 года - интересной, заманчивой, но ничем не подтвержденной.

А теперь обещанное сладкое.

Да, пока еще рано говорить с твердой уверенностью. Да, все это еще весьма вилами по воде писано, и совсем не обязательно обязано быть. Да, впереди еще долгая–предолгая дорога расчетов, ошибок и экспериментов, но.

Самая вкуснота в том, что инфляционная теория Алана Гута, а точнее как раз математические выкладки Андрея Линде подразумевают совершенно замечательную и крышесносящую штуку.

Дополнения Линде официально называются "хаотическая теория инфляции" . Центральная ее часть, сама эссенция теории говорит о том, что данные "разряды скалярного поля" просто обязаны хаотически , т.е. случайно, происходить везде и всюду в изначальной протоВселенной. А это значит, что наш конкретный Большой Взрыв (который, как мы уже знаем из текущего поста, был совсем не взрыв), приведший к образованию нашей конкретной Вселенной - лишь один разряд, отдельный конкретный пузырь образовавшегося пространства, что мы зовем нашим космосом. А вокруг не просто "может быть", а по формулам прямо–таки "обязательно" должны плавать миллиарды и миллиарды других пузырей, других вселенных. В каждой из этих вселенных (уже с маленькой буквы) скалярное поле падало/разряжалось чуточку иначе, а следовательно законы физики в этих вселенных могут существенно отличаться от наших. Звезды и галактики там могли и вовсе не образоваться, или наоборот, там могло образоваться такое, что нам и не снилось в самых диких фантазиях.

Весь этот конгломерат раздувающихся пузырей–вселенных принято называть мультивселенная , хотя сам Линде предпочитает говорить по–русски "Многоликая Вселенная". Получается, что современное научное понимание происхождения и устройства нашего мира сейчас таково:

Существует бесконечная или как минимум очень большая мультивселенная, заполненная неким скалярным полем. Как долго она существует, откуда сама появилась, каковы условия в этой мультивселенной - мы понятия не имеем. Даже на полшишечки. Но ученые довольно сильно уверены, что в некоторых местах этой мультивселенной скалярное поле начинает падать, надувая пузыри обычных вселенных и образовывая в них привычное нам пространство–время. Наш конкретный пузырь начал надуваться около 13.8 миллиардов лет назад, и скалярное поле в нашей Вселенной, кстати, никуда не делось, теперь оно находится почти в минимуме, но не равно нулю! То, что расталкивает галактики нашей Вселенной в стороны, и что мы называем Темной Энергией, это и есть то самое "скалярное поле", точнее сказать, лишь часть его. Тут между прочим должно быть несколько абзацев объясняющих, что давно искомое поле Хиггса, образованное вроде бы недавно найденным бозоном Хиггса, тоже является порождением скалярного поля, а именно его внуком, потому что между скалярным и хиггсовым есть, вернее должно бы быть , еще некое суперХиггсово поле, в которое вырождается скалярное и которое в свою очередь вырождается в хиггсово. Но это не совсем доказано, и уже совсем в сторону от нашего текущего разговора, так что, пожалуй, хватит об этом.

Вокруг пузыря нашей Вселенной находятся пузыри других вселенных, которые образуются от падения скалярного поля в тех конкретных местах. Где–то их собственный местечковый большой взрыв (тоже с маленькой буквы) только–только начинается, а где–то все уже давно закончилось, а "между" этими вселенными находится просто скалярное поле в своем высоком энергетическом состоянии. Мультивселенная становится похожа на швейцарский сыр, где сам сыр это скалярное поле, а дырки в нем - мириады и мириады вселенных, одна из которых наша.

Можно ли пробурить тоннели сквозь это скалярное поле, чтобы попасть в другие "параллельные" вселенные? Неизвестно.
Как далеко от нашего пузыря до соседнего, и можно ли пробраться туда через высшие измерения? Неизвестно.
Существуют ли они вообще в действительности эти другие вселенные вокруг нашей или все это лишь фантазии? Неизвестно, но теперь в науке этому есть очень сильная уверенность.

Разве не замечательно?

UPD: Продолжение поста читайте в статье .

Один из фрагментов первой микросекунды жизни вселенной сыграл огромную роль в ее дальнейшей эволюции.

Концептуальный прорыв стал возможным благодаря очень красивой гипотезе, родившейся в попытках найти выход из трех серьезных неувязок теории Большого взрыва - проблемы плоской Вселенной, проблемы горизонта и проблемы магнитных монополей.

Редкая частица

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий - сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10^–36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10^15 –10^16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь - в виде магнитных монополей.

Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.

Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10^–30. Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.

Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

Отрицательное давление

И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.

Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана–Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Плоская Вселенная

Увеличивающаяся сфера демонстрирует решение проблемы плоской Вселенной в рамках инфляционной космологии. По мере роста радиуса сферы выбранный участок ее поверхности становится все более и более плоским. Точно таким же образом экспоненциальное расширение пространства-времени на этапе инфляции привело к тому, что сейчас наша Вселенная является почти плоской.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.

Решение проблем

Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10^–35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10^50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10^–100 раз, то есть пространство станет идеально плоским!

Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния. С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром в миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.

Модель космологической инфляции, решающая многие неувязки теории Большого взрыва, утверждает, что за очень короткое время размер пузырька, из которого образовалась наша Вселенная, увеличился в 10^50 раз. После этого Вселенная продолжила расширяться, но уже значительно медленнее.

Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положившего начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

Из одного пузыря

На рубеже 1970–1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10^–34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.

Но модель Гута всё же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то всё становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

Хаотическая инфляция

В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.

Потеря связи

Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд. световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд. лет. Однако когда это излучение начало свое странствие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти путь, соответственно, лишь в 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом - их космологические горизонты не пересекаются.

Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного «растяжения» флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью - если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи - отнюдь не преувеличение.

Плоская проблема

Астрономы уже давно уверились в том, что если нынешнее космическое пространство и деформировано, то довольно умеренно.

Геометрия космоса

Локальная геометрия Вселенной определяется безразмерным параметром: если он меньше единицы, Вселенная будет гиперболической (открытой), если больше - сферической (закрытой), а если в точности равен единице - плоской. Даже очень небольшие отклонения от единицы со временем могут привести к значительному изменению этого параметра. На иллюстрации синим показан график параметра для нашей Вселенной.

Модели Фридмана и Леметра позволяют вычислить, какой была искривленность пространства вскоре после Большого взрыва. Кривизна оценивается с помощью безразмерного параметра, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет 40 назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10^–14! Случайна такая фантастически точная «настройка» или обусловлена физическими причинами? Именно так в 1979 году сформулировали задачу американские физики Роберт Дике и Джеймс Пиблз.

В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается в одной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров - Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях - к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.

Борьба идей

«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, - объясняет «ПМ» один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. - После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее - теории суперструн. Однако такой путь оказался очень нелегким. Во-первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.

Там, за горизонтом

Проблема горизонта связана с реликтовым излучением. Из какой бы точки горизонта оно ни пришло, его температура постоянна с точностью до 0,001%.

Нормальное расширение со скоростями, меньшими скорости света, приводит к тому, что вся Вселенная рано или поздно будет находиться внутри нашего горизонта событий. Инфляционное расширение со скоростями, значительно превышающими скорость света, привело к тому, что нашему наблюдению доступна лишь малая часть Вселенной, образовавшейся при Большом взрыве. Это позволяет решить проблему горизонта и объяснить одинаковую температуру реликтового излучения, приходящего из различных точек небосвода.

В 1970-х этих данных еще не было, но астрономы и тогда полагали, что колебания не превышают 0,1%. В этом и состояла загадка. Кванты микроволнового излучения разлетелись по космосу приблизительно через 400 000 лет после Большого взрыва. Если Вселенная все время эволюционировала по Фридману–Леметру, то фотоны, пришедшие на Землю с участков небесной сферы, разделенных угловым расстоянием более двух градусов, были испущены из областей пространства, которые тогда не могли иметь друг с другом ничего общего. Между ними лежали расстояния, которые свет попросту не успел бы преодолеть за все время тогдашнего существования Вселенной - иначе говоря, их космологические горизонты не пересекались. Поэтому у них не было возможности установить друг с другом тепловое равновесие, которое почти точно уравняло бы их температуры. Но если эти области не были связаны в ранние моменты образования, как они оказались практически одинаково нагреты? Если это и совпадение, то слишком уж странное.

Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».

Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».

Наравне с эволюцией

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, - говорит директор Института космологии при университете Тафтса Александр Виленкин. - Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».

Андрей Дмитриевич Линде, Стэнфордский университет (США), профессор. 10 июня 2007 года, Москва, ФИАН

Во-первых, я должен сказать, что я немножечко робею. Я в этом зале выступал много раз. Сначала я здесь учился, и когда всё это началось, я был студентом Московского университета, приходил сюда на семинары, в ФИАН. И каждый раз я сидел на этих семинарах, мучительно, мне было жутко интересно, а также невероятно сложно. Всё то, что говорилось, я понимал, ну, примерно на десять процентов. Я думал, что, наверное, я, ну, идиот такой, ничего больше не понимаю, физика из меня не получится… Но уж больно хотелось, продолжал ходить. Эти десять процентов понимания у меня сохранились до сих пор: в основном на семинарах, на которые я хожу, я понимаю примерно десять процентов. А потом я сделал впервые свой доклад здесь. Я поглядел на лица людей, и у меня было впечатление, что они тоже понимают на десять процентов. И тогда у меня исчез комплекс неполноценности, отчасти по крайней мере. Немного, наверное, всё равно остался… Я зачем это говорю? Тематика довольно сложная. И если десять процентов будет понятно, то, значит, вы на правильном пути.

То, о чём я сейчас буду говорить, связано с теорией инфляционной Вселенной. Инфляционная Вселенная, по-русски это называлось «раздувающаяся Вселенная», но стандартное название «инфляционная». В последнее время возник такой термин - «Multi-verse». Это термин, заменяющий слово «Universe». Значит, вместо одной Вселенной - много вселенных сразу в одной. Ну вот по-русски, пожалуй, наиболее адекватный перевод - это «многоликая Вселенная». И про это я сейчас буду говорить.

Но сначала общее введение о космологии вообще. Откуда взялась инфляционная космология (зачем она понадобилась)? Что было до нее (теория Большого взрыва). Сначала такие биографические данные. Возраст Вселенной, согласно последним наблюдаемым данным… Вот когда я говорю про возраст, каждый раз я говорю и где-то в душе ставлю маленькую запятую, что я должен к этому вернуться и потом сказать, что на самом деле Вселенная может быть бесконечно старая. Ну вот то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до… пожалуй, лучше, чем 10%. Сейчас люди знают это достаточно хорошо. Размер наблюдаемой части Вселенной… Что значит «наблюдаемой»? Ну вот, свет путешествовал к нам 13,7 миллиарда лет, значит надо умножить это на скорость света и получится расстояние, на котором мы сейчас видим вещи. Говорю я это, а в душе сразу опять ставится запятая: на самом деле это не так. Потому что мы видим в несколько раз дальше, чем это, потому что те объекты, которые послали к нам свет 13,7 миллиарда лет назад, они сейчас от нас находятся дальше. И мы от них видим свет-то, а они дальше, поэтому в действительности мы видим больше, чем скорость света умножить на время существования Вселенной.

Дальше. Средняя плотность вещества - примерно 10 –29 г/см 3 . Очень мало. Но мы живем в том месте, где оно сконденсировалось… Вес наблюдаемой части Вселенной - больше 10 50 тонн. Вес в момент рождения… а вот это вот самое интересное. Когда Вселенная родилась, если отсчитывать прямо от момента Большого взрыва, совсем вот во время t = 0 , то ее вес должен был быть бесконечным. Если отсчитывать от какого-то другого момента… он называется планковский. Планковский момент - это момент 10 в степени минус… Ну вот, иногда все-таки буду писать на доске… Значит, t планковское - это примерно 10 в минус сорок третьей секунд (t p ~ 10 –43 с). Это момент, начиная с которого впервые мы можем Вселенную рассматривать в терминах нормального пространства-времени, потому что если мы возьмем объекты на временах меньше, чем это, или на расстояниях меньше, чем планковское расстояние (это 10 –33 см), - если мы возьмем меньшее расстояние, то на меньших расстояниях пространство-время так сильно флуктуирует, что померить их будет нельзя: линейки гнутся, часы вращаются, как-то нехорошо… Поэтому нормальное рассмотрение начинается с этого момента. И в этот момент Вселенная имела вес необычайно большой. Я вам скажу, какой - немножечко погодя. А то, что сделала инфляционная Вселенная: мы научились объяснять, как можно всю Вселенную получить из меньше чем одного миллиграмма вещества. Всё, что мы сейчас видим…

И давайте дальше, предварительные данные. Простейшие модели Вселенной, то, что вошло в учебники, - это три возможных модели Фридмана. Первая - это замкнутая Вселенная, [вторая] - открытая Вселенная, и [третья] - плоская Вселенная. Эти картинки - тоже примерные только картинки. Смысл состоит в следующем.

Вот простейший вариант - плоская Вселенная. Геометрия плоской Вселенной такая же, как геометрия плоского стола, то есть параллельные линии остаются параллельными и нигде не пересекаются. В чём отличие, чем отличается от плоского стола? Тем, что если у меня есть две параллельные линии… например, пошло два луча света, параллельные друг другу… Вселенная расширяется, поэтому, хотя они параллельные, два луча света, они удаляются друг от друга за счет того, что вся Вселенная расширяется. Поэтому сказать так - что геометрия плоского стола, - это не до конца правильно. Вселенная является кривой в четырехмерном смысле. В трехмерном смысле она является плоской.

Замкнутая Вселенная похожа геометрическими свойствами на свойства поверхности сферы. То есть если у меня есть две параллельные линии на экваторе, то они пересекаются на северном и южном полюсе. Параллельные линии могут пересекаться. А мы как бы живем на поверхности сферы, как такая блоха, которая ползет по глобусу. Но тоже аналогия поверхностная - в двух смыслах. Наша Вселенная, она как бы трехмерная сфера в четырехмерном пространстве. Приходится картинки рисовать, а в действительности только аналогии… И, кроме того, она расширяется. Если мы захотим пройти от экватора до северного полюса, то нам времени не хватит - такая Вселенная может сколлапсировать, или мы не дойдем, потому что она слишком быстро расширяется.

Открытая Вселенная похожа по своим свойствам на свойства гиперболоида, то есть если у горловины гиперболоида я пущу две параллельные прямые, то они начнут расходиться и никогда не встретятся.

Вот три основных модели. Их предложил Фридман довольно давно, в 20-е годы прошлого столетия, и Эйнштейн их очень не любил. Не любил, потому что это всё как бы противоречило той идеологии, на которой были воспитаны люди того времени. Идеология состояла в том, что Вселенная - это ведь система координат, ну и координаты-то, они не расширяются, это просто сетка. Люди всегда считали в Европе - сначала считали, - что Вселенная конечна и статична. Конечна, потому что Бог бесконечен, а Вселенная меньше Бога, поэтому она должна быть конечна, а статична… ну, потому что, что же ей делать-то - система координат… Потом они отказались от первого предположения, сказав, что Бог не потеряет много, если он один из своих атрибутов отдаст Вселенной и сделает ее бесконечной, но всё равно считалось, что она статична.

Расширение Вселенной - это было странное такое свойство, против которого долго боролись, до тех пор, пока не увидели, что она на самом деле расширяется. Значит, то, что произошло за последние несколько лет, экспериментально - не в теоретической физике, а в экспериментальной космологии. Выяснилось две вещи. Мы начнем со второго. В 1998 году люди увидели, что Вселенная сейчас расширяется с ускорением. Что означает с ускорением? Ну, вот она расширяется с какой-то скоростью. В действительности, это немножко неправильно…

Значит, вот a - это масштаб Вселенной, a с точкой (å ) - это скорость расширения Вселенной, a с точкой разделить на a (å /a ) - это… Вот a , например, расстояние от одной галактики до другой, назовем его буквой a . А это (å /a ) - скорость, с которой галактики убегают друг от друга. Вот эта вещь (å /a = H) есть хаббловская постоянная, она на самом деле зависит от времени. Если эта вещь убывает со временем, это не означает, что Вселенная перестает расширяться. Расширение означает, что a с точкой больше нуля (å > 0). А вот то, что люди обнаружили сейчас, - что сейчас этот режим асимптотически приближается к константе (å /a = H → const), то есть не только a с точкой положительно, но вот это их отношение, оно устремляется к константе. И если это дифференциальное уравнение разрешить, окажется, что масштабный фактор Вселенной ведет себя асимптотически приблизительно так: a ~ e H t - Вселенная будет экспоненциально расширяться, и этого не очень-то ожидали раньше. То есть это есть ускоренное расширение Вселенной, а раньше, по стандартной теории, выходило, что Вселенная должна расширяться с замедлением.

Вот это открытие последних девяти лет. Сначала люди думали, что, ну, где-нибудь экспериментальная ошибка, еще что-то, потом стали называть их разными словами - космологическая постоянная, энергия вакуума, темная энергия… Значит, вот это то, что произошло недавно. Теория о которой я сейчас буду говорить, - это инфляционная космология. Она предполагает (и сейчас всё больше кажется, что, наверное, это было правильное предположение, мы еще всё равно в точности не знаем - есть конкурирующие теории, хотя они мне там и не нравятся, но, значит, это точки зрения) - но кажется, что это вот правильная вещь, - что в ранней Вселенной, по-видимому, Вселенная тоже расширялась ускоренно. Причем с гораздо большим ускорением, чем то, с каким она расширяется сейчас, - на много десятков порядков большим ускорением. Вот эти два открытия… по-видимому, их надо попытаться интерпретировать как-то.

Значит, картинки, которые при этом часто рисуют… Вот (пока что не смотрите на эту красную картинку) стандартная, из учебника. Если Вселенная замкнутая - то есть геометрия похожа на геометрию сферы, поверхности сферы, - то она возникает из сингулярности и исчезает в сингулярность, у нее конечное время существования. Если она плоская, то она возникает из сингулярности и расширяется до бесконечности. Если она открытая, то она тоже продолжает двигаться с постоянной скоростью.

То, что выяснилось, то, что я сейчас сказал насчет этой темной энергии, космологической постоянной, ускорения Вселенной, - выяснилось, что она ведет себя так. И выяснилось, что она ведет себя так, какая бы она ни была - открытая, закрытая, плоская… Вообще в таких случаях вот такая вот вещь. Сейчас, если мы открываем учебники по астрономии, в основном они всё еще публикуют вот эти вот три картинки, и это то, на чём мы были воспитаны в течение последних лет. Поэтому существование вот этой последней - это было замечательное открытие, и оно связано с тем, что люди поверили, что в вакууме существует ненулевая плотность энергии, в пустоте. Она очень маленькая: она такого же порядка, как плотность энергии вещества во Вселенной, - 10 –29 г/см 3 . И вот когда я иногда представляю этих людей, я говорю: «Посмотрите, вот это люди, которые померили энергию… ничего». Вот так, вот эта вот красная черта.

Общая картина распределения энергии… Когда я говорю «энергия», или говорю «материя», «вещество», я подразумеваю одно и то же, потому что, как мы знаем, E равняется mc квадрат (E = mc 2 ), то есть эти две вещи пропорциональны друг другу… Есть темная энергия…


Полный бюджет энергии и материи во Вселенной представлен таким вот пирогом: 74% примерно составляет темная энергия. Что это такое, никто не знает. Либо это энергия вакуума, либо это энергия медленно меняющегося однородно распределенного специального скалярного поля - об этом дальше. Ну, вот это отдельная часть, она не комкуется. Что я под этим подразумеваю? Она не сбивается в галактики. Темная материя (примерно 22% всего бюджета) - что-то такое, что комкуется, но чего мы не видим. Что-то, что может сбиваться в Галактики, но чего мы не видим, не светится. И примерно 4–5% - это «нормальная» материя. Вот бюджет всей нашей материи.

И есть там мировые загадки. Почему они одного и того же порядка, эти величины, и почему так много все-таки такой энергии сидит в пустоте? Как же это вообще так оказалось, что мы, такие гордые, думали, что всё такого типа, как мы, а нам-то и дали всего четыре процента… Так вот…

Теперь - инфляционная Вселенная. Пока что идет просто справка, чтобы было понятно, о чём я говорю, а уже потом начнется дело. Инфляция - это вот что. Вот то, что было на предыдущих картинках, что Вселенная началась и начала расширяться, и, помните, дуга была выгнута вот в такую сторону… Вот если я вернусь назад, покажу вам вот это всё… вот видите, все дуги - они были выгнуты вот так. Инфляция - это кусок траектории, который существовал как бы до Большого взрыва в некотором смысле, до того, как дуга начала прогибаться так. Это время, когда Вселенная расширялась экспоненциально и Вселенная расширялась с ускорением. Она изначально могла иметь очень маленький размер, а потом была стадия очень быстрого расширения, потом она становилась горячей, и потом происходило всё то, что в учебниках было написано: что Вселенная была горячая, взорвалась, как горячий шар, - вот это всё было после стадии инфляции, а во время инфляции частиц могло не быть вообще. Вот такая справка.

Значит, зачем всё это понадобилось? А затем, что люди смотрели 25 лет назад - немножко больше уже - на теорию Большого взрыва и задавали разные вопросы. Я перечислю вопросы.

Что было, когда ничего не было? Ясно, что вопрос бессмысленный, чего же его задавать… В учебнике Ландау и Лифшица написано, что решения уравнений Эйнштейна нельзя продолжить в области отрицательного времени, поэтому бессмысленно спрашивать, что было до этого. Бессмысленно, но все люди всё равно спрашивали.

Почему Вселенная однородна и изотропна? Вопрос: почему, действительно? Что значит однородна? Ну вот, если мы рядом с нами посмотрим, наша Галактика - она не однородна. Рядом с нами Солнечная система - большие неоднородности. Но если мы посмотрим в масштабах всей наблюдаемой нами сейчас части Вселенной, вот эти 13 миллиардов световых лет, то в среднем справа и слева от нас Вселенная имеет ту же самую плотность, с точностью примерно до одной десятитысячной и даже лучше, чем это. Значит, кто-то ее отполировал, почему она такая однородная? И в начале прошлого века на это отвечали следующим образом. Есть такая вещь, которая называется «космологический принцип»: что Вселенная должна быть однородна.

Я любил шутить, что люди, у которых нет хороших идей, у них иногда есть принципы. Потом я перестал это делать, потому что оказалось, что этот принцип был введен, в частности, Альбертом Эйнштейном. Просто в то время люди не знали, и до сих пор во многих книжках по астрономии люди обсуждают космологический принцип - что Вселенная должна быть однородна, потому что… ну, вот она однородна!

С другой стороны, мы знаем, что принципы - они уж должны быть тогда полностью правильные. Там, не знаю, человек, который берет маленькие взятки, его нельзя назвать человеком принципов. Наша Вселенная была немножко неоднородной - в ней есть галактики, они необходимы для нас, значит откуда-то мы должны понять, откуда, галактики берутся.

Почему все части Вселенной стали расширяться одновременно? Та часть - Вселенная, и та часть - Вселенная, они друг с другом не говорили, когда Вселенная только что начала расширяться. Несмотря на то, что размер Вселенной был маленький, для того чтобы одна часть Вселенной узнала о том, что другая начала расширяться, надо, чтобы человек, который живет здесь, - ну, воображаемый человек - узнал бы о том, что эта часть начала расширяться. А для этого он должен бы был получить сигнал от того человека. А для этого потребовалось бы время, так что люди никак не могли договориться, особенно в бесконечной Вселенной, что, ура, надо начать расширяться, уже позволили… Значит, это почему все части Вселенной начали расширяться одновременно…

Почему Вселенная плоская? То, что сейчас экспериментально известно, - что Вселенная почти плоская, то есть параллельные линии, они не пересекаются в наблюдаемой части Вселенной. Значит, почему Вселенная такая плоская? Нас в школе учат, что параллельные линии не пересекаются, а в университете говорится, что Вселенная может быть замкнутая, и они могут пересекаться. Так почему Эвклид был прав? Не знаю…

Почему во Вселенной такое огромное количество элементарных частиц? В наблюдаемой нами части Вселенной больше чем 10 87 элементарных частиц. Стандартный ответ на это состоял в том, что, ну, Вселенная - она же большая, вот поэтому… А почему она такая большая? И я иногда аккумулирую это в таком виде: почему так много людей пришло на лекцию? - а потому, что так много людей в Москве… - а почему так много людей в Москве? - а Москва только часть России, а в России много людей, часть пришла на лекцию… - а почему так много людей в России, вот в Китае еще больше? А вообще говоря, мы только на одной планете живем, а у нас много планет в Солнечной системе, а сейчас еще больше планет отыскивают еще во Вселенной, а вы знаете, что в нашей Галактике 10 11 звезд, и поэтому где-то планеты, где-то есть люди, часть из них пришла на лекцию… Почему в нашей Галактике так много звезд? А вы знаете, сколько галактик в нашей части Вселенной? Примерно 10 11 –10 12 галактик, и в каждой из них 10 11 звезд, вокруг них вращаются планеты, и часть людей пришла на лекцию. А почему у нас так много галактик? Ну, потому что Вселенная же большая… Значит… и вот здесь мы и кончаем.

А если взять, например, Вселенную - типичную замкнутую Вселенную, у которой был бы единственный типичный размер, который имеется в общей теории относительности вместе с квантовой механикой, - 10 –33 см, начальный размер. Значит, сжать вещество до самой предельной плотности, которая только возможна (это так называемая планковская плотность, ρ планковское), - это примерно 10 94 г/см 3 … Почему предельная? Она не в том смысле предельная, что дальше нельзя, а в том смысле, что если сжать материю до такой плотности, то Вселенная начинает так флуктуировать, что ее нормальным способом описать невозможно. Значит, вот если взять и сжать материю до самой большой плотности, засунуть в нее естественного размера замкнутую Вселенную и посчитать количество элементарных частиц там, то окажется, что в ней есть одна элементарная частица. Может быть, деcять элементарных частиц. А нам надо 10 87 . Поэтому это реальная проблема - откуда, почему так много элементарных частиц?

Дело этим не кончается. Откуда взялась вся энергия во Вселенной? Вот раньше я даже это так для себя не сформулировал, до тех пор, пока меня не пригласили в Швецию на какой-то нобелевский симпозиум, посвященный энергии… то есть туда собрались люди, которые занимаются нефтедобычей, еще чего-то. И мне дали там открывать эту конференцию, и первый доклад… Я никак не мог понять, чего они от меня хотят? Я нефтедобычей не занимаюсь, солнечной энергией и энергией ветра не занимаюсь, что я про энергию вообще скажу? Ну, и начал я тогда доклад с того, что сказал: вы знаете, откуда энергия-то взялась во Вселенной? Знаете, сколько у нас энергии? Давайте посчитаем.

Энергия вещества во Вселенной не сохраняется. Первый парадокс. Вот мы знаем, что энергия сохраняется, - а вот это не правильно. Потому что, если мы возьмем, например, загоним газ в ящик и дадим ящику расширяться… Вот ящик - это наша Вселенная, дадим ящику расширяться. Газ - он давление оказывает на стенки ящика. И когда ящик расширяется, этот газ совершает работу над стенками ящика, и поэтому когда ящик расширяется, газ энергию свою теряет. Потому что он работу совершает, всё правильно, баланс энергии есть. Но только факт-то состоит в том, что во время расширения Вселенной полная энергия газа уменьшается. Потому что есть стандартное уравнение: изменение энергии равняется минус давление умножить на изменение объема (dE = –PdV ). Объем-то Вселенной растет, давление-то положительно, поэтому энергия уменьшается.

Вот во всех моделях Вселенной, нормальных, тех, которые были ассоциированы с теорией Большого взрыва, полная энергия Вселенной уменьшалась. Если сейчас 10 50 т, то сколько же было в начале? Потому что энергия-то только тратилась. Значит, тогда в начале должно было быть больше. Кто-то должен был сделать эту Вселенную с гораздо большей энергией, чем сейчас. С другой стороны, что-то же должно сохраняться. А куда тратится эта энергия во время расширения Вселенной? Она тратится на то, что размер Вселенной меняется, что Вселенная расширяется с некоторой скоростью. Есть некоторая энергия, которая прячется в геометрии Вселенной. Есть энергия, которая связана с гравитацией. И вот полная сумма энергии вещества и гравитационной энергии, она сохраняется. Но только если посчитать полную сумму. Есть разные способы счета - и опять там запятая некая ставится, - но при некотором способе счета полная сумма энергии вещества и гравитации, она просто равна нулю. То есть энергия материи компенсируется энергией гравитационного взаимодействия, поэтому есть ноль. И поэтому, да, она началась с нуля, она нулем и кончится, всё сохраняется, но только этот закон сохранения, он не очень полезен для нас. Он не объясняет нам, откуда же такая огромная энергия взялась. Значит, сколько?

Вот согласно теории Большого взрыва, полная масса вещества в начале, когда Вселенная родилась, должна была превосходить 10 80 т. Это уже много. Это совсем много… А если бы я это всё отчислял даже прямо от сингулярности, то просто во Вселенной должно было быть бесконечное количество вещества. И тогда возникает вопрос: откуда же кто-то нам дал это бесконечное количество вещества, если до момента возникновения Вселенной, ну, ничего не было? Сначала ничего не было, а потом вдруг стало, и так много, что даже как-то немножко странно. То есть кто бы это мог сделать?.. А физики так вопрос формулировать не хотели, ну и сейчас не хотят.

Поэтому, может быть, хорошо, что нашлась теория, которая позволяет, по крайней мере в принципе, объяснить, как можно было сделать всё это, исходя из кусочка Вселенной с изначальным количеством материи меньше одного миллиграмма. Ну вот, когда я про это говорю, я думаю, что бы нормальный человек подумал, если бы такую вещь сказать давно, или если бы не писать уравнений при этом, и так далее…

Я помню, когда меня здесь проводили на старшего научного сотрудника, вызвали меня и начали меня спрашивать: «А чем вы занимаетесь?» А я им начал говорить, что вот, занимаюсь я, в частности, тем, что в разных частях Вселенной может оказаться так, что законы физики могут быть разные: в части есть, там, электромагнитное взаимодействие, в части - нет… Они мне сказали: «Ну, это уж слишком!» Но старшего научного все-таки дали. Вот это и есть та самая теория многоликой Вселенной, о которой я вам буду говорить.

Вот мы переходим к делу, к теории инфляционной космологии. Сначала первая простейшая модель. Простейшая модель выглядит следующим образом. Вот у вас есть некое скалярное поле, у которого энергия пропорциональна квадрату скалярного поля. Первые простейшие слова - и уже здесь возникает вопрос: что такое скалярное поле? Часть людей знает, часть людей не знает. Часть людей знает, что в Швейцарии сейчас строится огромный ускоритель, для того чтобы найти хиггсовскую частицу. Хиггсовская частица - это частица, которая является как бы квантом возбуждения специального типа скалярного поля. То есть люди используют эти поля уже давно, больше тридцати лет. Но смысл интуитивный легче всего понять с помощью аналогии. Вот здесь вот есть 220 вольт в сети. Если бы было просто 220 вольт и не было нуля, всю Вселенную заполнило бы 220 вольт, то никакого тока бы не было, ничего бы никуда не текло, потому что это было бы просто другое вакуумное состояние. В Америке 110 вольт. То же самое - если было бы просто 110 вольт, ничего бы не текло… Если вы возьметесь одной рукой за одну сторону, другой рукой за другую, то вас бы тут же убило, потому что разница потенциалов - это то, что… Я должен перестать…

Хорошо. Значит, так вот, постоянное скалярное поле - это аналог такого же поля. Это не точная аналогия, но примерная аналогия. Что такое векторное поле? Векторное поле - например, электромагнитное. У него имеется величина и направление. Что такое скалярное поле? У него имеется величина, а направления нет. Вот и вся разница, то есть оно гораздо проще, чем электромагнитное поле. У него нет направления, оно является лоренцовским скаляром. Лоренцовский скаляр - это означает следующее. Если вы побежите относительно него, вы не почувствуете, что вы бежите: ничего не изменилось. Если вы повернетесь, ничего не изменится тоже, вы не почувствуете, что вы поворачиваетесь. Выглядит как вакуум, если оно не движется, если оно постоянно. Но только это специальный вакуум, потому что у него может быть потенциальная энергия. Это первое свойство его. И во-вторых, если у вас в разных частях Вселенной разный вакуум, то там также разный вес элементарных частиц, разные свойства, поэтому от того, есть или нет это скалярное поле, а) зависят свойства элементарных частиц и б) зависит плотность энергии вакуума во Вселенной, так что это, в принципе, важная вещь. И вот простейшая теория, у которой энергия этого скалярного поля пропорциональна его квадрату.


Давайте посмотрим на уравнения. Я сейчас никакие уравнения решать не буду, а показывать их буду, так что не надо бояться… Первое - это немного упрощенное уравнение Эйнштейна, которое говорит: вот это скорость расширения Вселенной поделить на размер, это есть Хаббловская постоянная в квадрате, и она пропорциональна плотности энергии вещества во Вселенной. А я сейчас захочу пренебречь всем - там, газом, чем угодно… оставить только скалярное поле. И здесь надо было бы написать гравитационную постоянную, там еще восемь пи на три…

Сейчас забудем про гравитационную постоянную. Люди, которые занимаются этой наукой, они говорят: ну, возьмем гравитационную постоянную равную единице, скорость света, равную единице, постоянную Планка, равную единице, а потом, когда всё решим, мы это обратно вставим в решение, чтобы проще было…

Значит, вот это чуть-чуть упрощенное уравнение Эйнштейна, я оттуда еще выбросил пару членов, которые сами оттуда выбрасываются, после того как Вселенную начнет быстро сдувать. Это уравнение движения для скалярного поля. Не глядите сейчас на этот член. Это есть ускорение скалярного поля, а это показывает ту силу, с которой поле хочет устремиться в свой минимум энергии. И, для того чтобы было понятно, сравните это с уравнением для гармонического осциллятора. Опять, не смотрите на этот член. Это есть ускорение гармонического осциллятора, пропорциональное возвращающей силе. То есть сила, которая тащит поле осциллятора в точку x = 0, а это его ускорение. И мы знаем, чем дело кончается. Осциллятор так вот осциллирует. А если мы добавим такой член, x с точкой. Это скорость движения осциллятора. То есть это, если его перенести вот в эту сторону, будет понятно, что это как бы сила, которая не пускает осциллятор двигаться быстро. Это примерно как если вы засунете маятник в воду, то вода будет препятствовать осцилляции, и он будет осциллировать всё медленнее и медленнее. Как бы сила трения или вязкости.

Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.

Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.

Энергия очень большая, Хаббловская постоянная большая, коэффициент трения большой. Если коэффициент трения большой, скалярное поле катится вниз очень медленно. Если скалярное поле катится вниз очень медленно, то в течение большого времени оно остается почти постоянным. Если оно остается почти постоянным, я решаю вот это уравнение: a с точкой на a (å /a ) равняется почти постоянной. А я вам уже сказал, какое будет решение. Если a с точкой на a (å /a ) является почти постоянной, то это экспоненциальное решение, самое простейшее дифференциальное уравнение. И в таком случае Вселенная начинает расширяться экспоненциально.


Логика такая: если большое значение скалярного поля φ, большая скорость расширения Вселенной, большой коэффициент трения, поле φ катится вниз очень медленно. Решая дифференциальное уравнение с константой, получаем экспоненциальное расширение, это есть инфляция. Всё очень просто.

До этого надо было, в общем, помучиться, чтобы додуматься, чтобы всё свести к простому. В действительности началось всё с гораздо более сложного. Впервые идеи такого типа стал высказывать Алеша Старобинский в 1979 году здесь, в России. Его вариант этой теории основывался на квантовой гравитации с определенными поправками - конформные аномалии, теория была очень сложной, непонятно было, как, с чего начать, но теория, тем не менее, внутри Советского Союза была тогда очень популярной, она называлась «моделью Старобинского». Но немножко сложноватой, не было понятно, какая ее цель. Он хотел решить проблему сингулярности, это не удавалось…

После этого возникло то, что сейчас называется старая инфляционная теория, ее предложил в 1981 году Алан Гус (Alan Guth) из MIT - сейчас он в MIT, а раньше он было в SLAC , рядом со Стэнфордом. Он предложил, что Вселенная с самого начала сидит зажатая по своей энергии в состоянии ложного вакуума, никуда не движется, энергия там постоянная, в это время она расширяется экспоненциально, а потом этот ложный вакуум с треском разваливается, образуются пузырьки, они соударяются… Зачем это было нужно? А его желание состояло в том, чтобы решить тот лист проблем, который я вам написал раньше: почему Вселенная однородная, почему она изотропная, почему такая большая, - его цель была такая. И в этом было достоинство его работы. Не потому, что он предложил модель - его теория не работала, а потому, что он сказал, что вот замечательно было бы сделать что-то такое, и тогда мы решим сразу все эти проблемы. А его модель не работала потому, что после столкновения пузырьков Вселенная становилась такой неоднородной и изотропной, что, как бы, не надо было и стараться…

После этого все мы находились в состоянии душевного кризиса, потому что идея была такая приятная, такая симпатичная, и у меня была язва желудка, может быть от огорчения, что нельзя, никак не получается. А потом я придумал, как сделать то, что я назвал новой инфляционной теорией, а потом я придумал вот эту простую штуку с хаотической инфляцией, которая была проще всего. И тогда стало ясно, что мы говорим не о трюке каком-то, а всё может быть так просто, как теория гармонического осциллятора.

Но зачем это всё надо, я не сказал. А вот зачем. Во время инфляции, во время вот этой стадии, пока я катился вниз, Вселенная могла расшириться вот в такое количество раз. Это в простейших моделях. Что означает вот эта цифра? Ну вот я сейчас скажу, что это означает. Пример из арифметики. Самый маленький масштаб - 10 –33 см. Умножу его на десять, а дальше здесь рисуется вот такое вот количество нулей - не важно, какое количество нулей. Теперь возникает вопрос: чему равняется произведение? И ответ состоит в том, что вот, оно равняется вот этому же - значит, что 10 –33 можно уже не писать, это маленькая вещь. Значит, Вселенная оказывается вот такого огромного размера. А сколько мы сейчас видим? Вот эти 13 миллиардов лет, умноженные на скорость света, - это примерно 10 28 см. А вот это даже не важно, чего - сантиметров или миллиметров, не важно даже чего. Важно то, что вот это, ну, несопоставимо меньше этого.

То есть наша наблюдаемая часть Вселенной - мы вот где-то вот здесь. (Можно сейчас уже погасить, да? ) Вселенная начала расширяться, раздувалась, раздувалась, раздувалась, и мы живем как бы на поверхности этого огромного глобуса. И поэтому параллельные линии кажутся параллельными, поэтому никто и не видел этого северного и южного полюса. Поэтому наша часть Вселенной, где-то здесь, она вот началась где-то вот отсюда, из почти что точечки, и поэтому-то здесь все начальные свойства, ну, они-то рядышком, они были примерно одинаковыми. Поэтому и здесь они одинаковые.

А почему Вселенная такая однородная? Ну а представьте, что вы взяли Гималаи и растащили их вот в такое количество раз. Значит, у вас никто туда с рюкзаком не пойдет, потому что от долины до горы надо будет вот столько идти. Будет плоское место. Поэтому наша Вселенная такая плоская, такая однородная, во всех направлениях одинаковая.

Почему она изотропная? Что называется изотропной? Ну, она похожа как бы на сферу, во всех направлениях одинаковая, но она могла бы быть как огурец. Но если я огурец раздую вот в такое количество раз - а мы живем на его шкурке, - то во всех направлениях он будет одинаковым, поэтому Вселенная во всех направлениях станет одинаковой. То есть таким образом мы решаем большинство тех проблем, которые у нас возникали. Почему Вселенная такая большая? А вот почему! А сколько там элементарных частиц? А вот столько! Поэтому нам и хватает…

То есть мы еще не знаем, откуда всё это взялось, мы не можем так просто решить проблему сингулярности начальной - мы про это еще немножечко дальше скажем, - но вот это то, зачем была нужна эта теория.

С другой стороны, могло бы оказаться, что мы переработали немножко. Потому что если Гималаи полностью выплощить, то вся Вселенная будет настолько плоская и однородная, что действительно будет плохо жить там, мы тогда галактики ниоткуда не возьмем.

Но оказалось, что можно галактики продуцировать за счет квантовых флуктуаций. И это то, что здесь же, в ФИАНе, говорили Чибисов и Муханов . Они изучали модель Старобинского и увидели, что там, если посмотреть на квантовые флуктуации пространства, а потом посмотреть, что происходит во время расширения Вселенной, то они вполне могут породить галактики. И мы на них смотрели и думали: что вы, ребята, тут говорите? Вы говорите о квантовых флуктуациях, а мы говорим о галактиках! Они же реальные… А потом вот что выяснилось. Это уже когда мы перевели всё это на язык скалярного поля и так далее… Молодцы, в общем, люди! Надо же было додуматься до этого!

Вселенная работает как лазер, только вместо лазерного поля она продуцирует галактики. Вот что происходит. Возьмем скалярное поле, сначала высокочастотное, квантовые флуктуации. Квантовые флуктуации существуют всегда. Здесь, в этой аудитории, на маленьких расстояниях есть квантовые флуктуации. Хорошо, что вы мне дали два часа, я бы не закончил… За два часа, наверное, закончу…

Так вот, квантовые флуктуации существуют сейчас, прямо здесь, но они всё время осциллируют, их, если посмотреть в мелкоскоп и быстро так снимать, то тогда мы увидим, что там что-то возникает, что-то исчезает. Так просто не увидишь, они для нас не важны. Но во время быстрого расширения Вселенной, предположим, что была такая квантовая флуктуация. Она растягивалась, с расширением Вселенной. Когда она растянулась достаточно - помните это уравнение для скалярного поля, где стоит этот член 3Hφ с точкой? Уравнение, член с трением. Когда у вас поле было коротковолновое, оно знать ничего не знало о трении, потому что оно билось с такой энергией, что его трением остановить было нельзя. А потом, когда оно растянулось, оно энергию свою потеряло и вдруг почувствовало, что Вселенная расширяется, что трение есть, и вот так и застыло. Застыло и продолжало расширяться, растягивая Вселенную.

После этого, на фоне этой флуктуации, которая нарисована здесь, прежние флуктуации, которые раньше были очень коротковолновыми, энергичными и так далее, они растянулись, увидели, что Вселенная расширяется, почувствовали трение и застыли - на фоне тех флуктуаций, которые раньше застыли.

После этого Вселенная продолжала расширяться, и новые флуктуации замерзали, а Вселенная расширялась-то экспоненциально. И в результате что произошло? Что эти все флуктуации раздулись до большого размера.

Я сейчас поясню, что это такое: это результат вычислений, которые как бы симулируют возникновение флуктуаций и их дальнейшую эволюцию. Я объясню, что это будет, что это такое. Смысл состоит вот в чём. Что мы взяли эти квантовые флуктуации. Они замерзли. Вселенная стала неоднородной на экспоненциально большом масштабе. Эти неоднородности стоя т, стоя т, стоя т… Потом инфляция кончилась. Потом - эта часть Вселенной еще не видит эту часть Вселенной. А потом прошло время, и они друг друга увидели. И когда увидели, эта часть Вселенной сказала: «А, у меня энергии меньше, а у тебя энергии больше; давай, все камни от меня полетят в эту сторону, потому что здесь гравитация сильнее». И эти флуктуации размораживаются. То есть сначала они были заморожены - за счет быстрого расширения Вселенной. А потом, когда две части Вселенной друг друга увидели, то эти флуктуации размерзли, и это буквально… по барону Мюнхгаузену.

Я не знаю, в детстве сейчас вас учат, там, барона Мюнхгаузена читают? Нам читали. Как он путешествовал по России. Хотя он был немецкий лжец, но путешествовал по России, в Сибири. Они охотились. И был такой жуткий мороз, что когда он хотел позвать друзей, чтобы они вместе собрались, то он сказал «ту-туту-туту!», а ничего не получилось, потому что звук замерз в рожке. Ну, потом, было холодно, он в снегу, как опытный человек, отрыл пещеру, зарылся там… Наутро вдруг он слышит: «Ту-туту-туту!». Что произошло? Размерзся звук-то. Потому что утром солнце появилось, всё, снег подтаял, и звук размерзся…

Вот здесь это же самое: сначала квантовые флуктуации замерзли, растащились на большое расстояние, а потом, когда дело уже пришло к тому, чтобы галактики образовывались, они размерзли, и неоднородности собрались вместе и сделались галактикой.

Сначала мы начали с квантовых флуктуаций. Потом мы быстро сделали их огромными. И когда мы сделали их огромными, мы фактически сделали их классическими. Они уже в это время не осциллировали, не исчезали, они замерзли, были большими. Вот этот трюк - как из чего-то квантового сделать что-то классическое.

Значит, этот фильм показывает вот что. Если мы начнем с чего-то почти однородного, как сейчас, и потом начнем добавлять эти вот синусоиды… Каждый новый кадр показывает экспоненциально большую Вселенную. Но компьютер не мог расширяться, поэтому мы сжимали картинки. На самом деле надо понимать, что каждая картинка соответствует экспоненциально большей и большей Вселенной. И длины волн всех этих значений, они все примерно те же самые в момент, когда они создаются. А потом они растягиваются, но вот здесь не видно, что это здоровая синусоида. Кажется, что это пик, там, башня острая… Это просто потому, что компьютер их сжал.

Не видно также и другое: что в тех местах, где скалярное поле подскочило по случайности очень высоко, в этом месте энергия скалярного поля оказывается такой большой, что в этом месте Вселенная начинает расширяться еще гораздо быстрее, чем она расширялась здесь. И поэтому в действительности, если бы правильно рисовать картинку - ну просто компьютер не умеет это делать, и это не компьютер виноват, это просто физика такая: нельзя кривое пространство представить себе уложенным в наше пространство, просто кривовато, как кривая поверхность, не всегда это удается, поэтому здесь ничего не поделаешь, - надо просто понять, что вот эти вот пики, значит, размер отсюда досюда - он гораздо больше размера отсюда досюда. Здесь на самом деле здоровый пузырь.

Это то, что… - тоже достоинство русского обучения - то, что мы выяснили, когда были на практике военного дела в университете: что расстояние по прямой бывает гораздо длиннее, чем расстояние по кривой, если прямая проходит рядом с офицером… Здесь, если вы пойдете по прямой рядом с этим пиком, то вы никогда не дойдете, потому что расстояние будет всё больше и больше. Кривое пространство можно представить себе двумя способами. Первое - можно говорить про расширение Вселенной, а второе - можно говорить про сжатие человека. Вот человек - это мера всех вещей. Если вы идете отсюда и доходите рядом с пиком, то можно сказать, что ваши шаги становятся всё меньше, и меньше, и меньше, и меньше, и поэтому вам трудно, трудно идти. Это другое понимание того, что это такое за пузырь здесь - это просто место, где вы сами уменьшаетесь по сравнению со Вселенной. Это почти эквивалентные вещи.


Откуда мы всё это знаем? Откуда мы знаем, что это всё правда? Ну, во-первых, честно говоря, мы с самого начала ведь знали, что это - правда. Потому что, ну, такая красивая была теория, так всё запросто объясняла, что после этого как бы даже экспериментальные доказательства были не очень нужны, потому что Вселенная же, ну… большая? - Большая. Параллельные прямые не пересекаются? - Не пересекаются… И так далее. Другого объяснения не было.

Поэтому, как бы, вот есть экспериментальные данные. Но люди, всё равно, они хотят не просто так, а хотят, чтобы и еще что-нибудь предсказать бы, чего мы не знали, и чтобы это подтвердилось. И одно из предсказаний - эти вот квантовые флуктуации… Хорошо было бы их увидеть на небе, а мы их не видели. И один за другим стали запускаться разные системы, спутники, первый замечательный спутник - это был «Кобе» (COBE), запущенный в начале 90-х, и люди как раз в прошлом году получили нобелевские премии за это. Они увидели следующее. Они увидели, что микроволновое излучение, которое приходит к нам с разных сторон Вселенной, оно немножечко анизотропное.

Сейчас я объясню, о чём идет речь. В середине 60-х люди увидели, что на Землю идет излучение с температурой примерно 2,7 K. Чего-то такое, радиоволны, очень малоэнергичные, но со всех сторон. Потом они поняли, что это такое. Вселенная, когда она взорвалась, она была горячей. Потом, когда она расширилась, эти фотоны свою энергию потеряли, и когда они к нам дошли, они дошли вот такими дохленькими, с маленькой-маленькой энергией. И со всех сторон была та же самая энергия - 2,7 K. Температура - мера энергии. Потом начали смотреть более пристально и увидели, что вот в этом направлении температура 2,7 плюс еще примерно 10 –3 , а вот в этом направлении 2,7 минус еще 10 –3 . И почему же это такое? А вот почему: потому что Земля движется по отношению ко всей Вселенной. И есть вот это самое красное смещение. В ту сторону, куда мы движемся, там небо становится более голубым, фотоны приходят чуть-чуть более энергичные. А откуда движемся, они идут немножечко более красные. Это был простой эффект. И мы сразу поняли, с какой скоростью мы движемся по отношению к реликтовому излучению, всё было просто.

А потом люди захотели узнать, а нет ли еще какой-нибудь структуры? И вот запустили спутники, один из них «Кобе», а вот здесь, на картинке нарисован WMAP , спутник такой. И картинка, которая показывает как бы эволюцию во времени.

Сначала был Большой взрыв, потом было вот это ускорение Вселенной - инфляция, потом возникли квантовые флуктуации, которые замерзли, потом эти квантовые флуктуации, которые замерзли, привели к возникновению структуры небольшой во Вселенной. В это время Вселенная была очень горячей. Она была такой горячей, что сигналы до нас просто не доходили, так же как Солнце для нас здесь непрозрачно: оно очень горячее, поэтому мы вглубь Солнца можем видеть только на несколько сотен километров. Вот…


А потом вдруг Вселенная стала прозрачной для обычного излучения, потому что электроны объединились с протонами в атомы, и дальше, когда Вселенная стала более или менее нейтральной, свет стал проходить до нас. И вот мы видим то излучение, которое прошло от этого момента. И вот эти спутники, они посмотрели и померили температуру от разных точек во Вселенной с точностью до 10 –5 K. Вот представьте себе, что в лаборатории было трудно получить, там, температуру один градус Кельвина. Люди померили температуру Вселенной, 2,7 K плюс еще, там, много знаков после этого, и потом они померили неточности в этой температуре с точностью до 10 –5 . Ну, научная фантастика! Я никогда не верил вообще, что это возможно, но потом стал доверять друзьям-экспериментаторам, потому что мы-то знаем, что мы, теоретики, а вот экспериментаторы, оказывается…

Значит, вот, они померили такие маленькие пятнышки на небе, эти маленькие пятнышки - они здесь раскрашены. Мы знаем, что там, где энергия больше - это синее смещение, там где энергия меньше - это красное смещение, но здесь всё наоборот. Люди, которые эту карту раскрашивали, они понимали, что психология людей работает не так. Всё равно это не видимый свет, это радиоизлучение, поэтому не красный, не белый, никакой. Поэтому они его раскрасили искусственно. И вот то, что красное, это чтобы понять, что там горячо. А там, где синее, - это чтобы понять, что холодно. Поэтому они раскрасили прямо наоборот. Но не важно. Важно то, что вот эти пятнышки на небе, они с точностью до 10 –5 .

Если поглядеть повнимательнее на кусочек этого неба, то вот какая картинка здесь получается. Вот такие вот пятнышки. Что это такое? А вот что это. Возникли эти квантовые флуктуации скалярного поля, растащились на всё небо, замерзли там, изменили там немножечко геометрию Вселенной и плотность вещества, изменили за счет этого температуру реликтового излучения, которое к нам приходит, и поэтому эта температура, вот эти неоднородности, являются фотографией тех квантовых флуктуаций, которые возникли на последних стадиях инфляции - возникли и замерзли. То есть мы сейчас видим всё небо, и это всё небо является как фотографическая пластинка, на которой изображены квантовые флуктуации, возникшие на конечной стадии инфляции, примерно в 10 –30 с. Мы видим фотографию того, что произошло с 10 –30 -й секунды после Большого взрыва. Ну вот, чудеса, что тут можно сказать!

Мало того, что мы видим эту фотографию - изучили ее спектральные свойства. То есть эти пятнышки на больших угловых размерах имеют одну интенсивность, на маленьких угловых размерах они имеют другую интенсивность. Посчитали спектр этих флуктуаций и выяснили, что спектр - он вот такой: черные пятнышки - это то, что экспериментально видит этот самый спутник WMAP. С тех пор появились и еще другие результаты, которые вот в эту область простираются, я их сейчас здесь и приводить не стал. Но вот красная линия - это теоретические предсказания простейшей модели инфляционной Вселенной, а черные точки - это то, что экспериментально видно.

Здесь есть какие-то аномалии. При больших углах самые большие расстояния маленькие. Здесь l - то, что здесь, вот, на этой оси, - это количество гармоник. То есть чем больше l , тем больше гармоники, тем меньше угол. На маленьких углах прекрасное совпадение с экспериментальными данными. На больших углах что-то не до конца понятное происходит. Но может быть, это просто потому неточности, потому что нам дан-то один только кусок Вселенной: мы статистику изучаем, а статистика у нас - как вы подбросили монетку один раз, какая вам статистика? Вам надо подбросить ее сто раз, чтобы увидеть, что примерно 50 на 50 произошло. Поэтому на больших углах статистика не очень точная. Всё равно немножечко точки выпадают - есть некая проблема, что здесь происходит. Какие-то есть анизотропии во Вселенной, которые мы не можем объяснить в больших масштабах пока что. Но тем не менее, факт-то состоит в том, что все остальные точки, оказывается, прекрасно ложатся. И поэтому совпадение теории с экспериментом очень впечатляющее.


Я решил для себя, что я должен придумать способ объяснить изменение картины мира на простом языке. А картина мира… Сейчас, я пока что до этой самой теории многоликой Вселенной еще не дошел. Это пока что простая картинка… Так вот. Изменение картины мира, оно выглядит так. Что сидим мы на Земле, смотрим вокруг. И вот окружены этой хрустальной сферой. Дальше ничего мы видеть не можем, а есть там звёзды, планеты… И мы знаем, что мы используем нашу космологию как машину времени.

Если мы возьмем и посмотрим, там, на Солнце, мы видим Солнце, каким оно было несколько минут назад. Посмотрим на дальние звёзды. Мы увидим звёзды такими, какими они были много лет назад, сотни лет назад, тысячи лет назад.

Если мы еще дальше пойдем, то мы увидим вот это место, где Вселенная только что стала горячей, и в это время пошли к нам фотоны, это вот то, что эти спутники видят, вот мы увидели этот космический огонь. А дальше Вселенная непрозрачна. Дальше, ближе к этому Большому взрыву, который произошел вот эти 13 миллиардов лет назад, мы подойти не можем. Но, конечно, если бы использовать, например, нейтрино, которые в это время излучены, - мы знаем, что мы можем получать нейтрино, которые идут из центра Солнца, - можно было бы получить нейтрино, которые были испущены ближе к этому Большому взрыву. Сейчас мы видим только то, что было примерно 400 000 лет после Большого взрыва. Ну, все-таки… по сравнению с 13 миллиардами четыреста тысяч - довольно хорошо… Но если бы нейтрино, мы могли бы подойти гораздо ближе. Если бы гравитационные волны, мы могли бы подойти совсем близко к Большому взрыву, прямо вот буквально до вот таких вот времен от Большого взрыва.


А что говорит инфляция? А инфляция говорит вот что. Что на самом деле вот этот весь огонь космический, он возник после инфляции, и здесь есть экспоненциально много места, когда вся Вселенная была заполнена только скалярным полем, когда частиц никаких не было, а если бы они даже и были, то плотность их экспоненциально падала бы всё время, потому что Вселенная экспоненциально расширялась.

Поэтому что бы там ни было до инфляции, это совершенно не важно. Вселенная здесь была практически пустой, а энергия сидела в этом скалярном поле. А уж после того, как оно - помните эту картину: скалярное поле шло вниз, вниз, вниз, потом постепенно, когда оно доходило донизу, Хаббловская постоянная становилась маленькой - оно начинало осциллировать, в это время за счет своих осцилляций оно порождало нормальную материю. В это время Вселенная становилась горячей. В это время возник этот огонь. А мы раньше думали, что этот огонь от начала мира. Мы просто были как волки, которые боятся через огонь перепрыгнуть, мы знали, что вот это вот начало мира.

Выясняется сейчас, что для того, чтобы объяснить, почему этот огонь был так однородно распределен, нам надо было, чтобы была стадия, которая всё уравнивала. И это - инфляционная стадия.


И дальше можно по небу идти далеко-далеко за это место, потому что Вселенная вот такая вот большая, вот столько там было. И если мы пойдем дальше, мы увидим эти места, где возникают квантовые флуктуации, которые порождают галактики. И мы увидим те места, где эти флуктуации такие большие, что они порождали новые части Вселенной, которые расширялись быстро и которые порождаются и возникают и сейчас . Вселенная за счет этих квантовых флуктуаций порождает сама себя, не только галактики, но большие части самой себя. И она становится бесконечной и самовоспроизводящейся Вселенной.

Но помимо всего этого возникает еще один эффект. Вот я вам рассказывал про Вселенную, в которой было скалярное поле только одного типа. Скалярное поле с таким простым потенциалом… Мы знаем, что если мы хотим описать теорию элементарных частиц полностью, то нам нужно много скалярных полей. Например, в теории электрослабых взаимодействий имеется хиггсовское поле. И хиггсовское поле делает все частицы нашего тела тяжелыми. То есть электроны приобретают массы, протоны приобретают массы, фотоны не приобретают массы. Другие частицы приобретают массы. В зависимости от того, какое скалярное поле, они приобретают разную массу.

Но этим дело не кончается. Есть еще и теория Великого объединения, в которой возникает скалярное поле другого типа. Это другое поле. Если бы его не было, то не было бы принципиальной разницы между лептонами и барионами, тогда бы протоны могли легко распадаться на позитроны, не было бы разницы между материей и антиматерией. Для того чтобы объяснить, что там произошло, как эти вещи отделились, пришлось ввести еще одно скалярное поле… В принципе, этих скалярных полей может быть много. Если посмотреть на простейшую теорию - суперсимметричную - теорию Великого объединения, то окажется, что потенциальная энергия в ней рисуется вот так…

Ну, это тоже примерная картинка, на самом деле. Это некоторое поле, которое на самом деле является матрицей. И вот, при одном значении этого поля нету никакого нарушения симметрии между слабым и сильным электромагнитным взаимодействием, нет разницы между лептонами и барионами. Есть другое значение поля, в котором специальный тип нарушения симметрии, совсем не то, что мы видим. Есть третий минимум, в котором как раз физика нашего мира. В действительности надо еще написать вот наше скалярное поле, и если всё вместе написать, то будет десяток таких минимумов. У них у всех в первом приближении одинаковая энергия, и мы живем только в одном из этих минимумов.

И тогда возникает вопрос: а как же мы в этот минимум попали? А в самой ранней Вселенной, когда температура была горячей, существовал только вот этот минимум. И возникала проблема: как же мы тогда просочились вот в этот минимум-то, потому что в ранней Вселенной, в согласии с той теорией, которую мы здесь развивали вместе с Давидом Абрамовичем Киржницем , которому пришла эта идея ему в голову, насчет того, что в ранней Вселенной симметрия между всеми взаимодействиями восстанавливается. И вот тогда мы должны были бы сидеть здесь. А как же мы тогда попали вот сюда? И единственный способ, как мы туда могли попасть, это за счет квантовых флуктуаций, которые генерировались во время инфляции.

Но ведь это скалярное поле тоже скакало и тоже замерзало. И оно могло перескочить в этот минимум, перескочить в этот, перескочить обратно. Потом, если оно перескочило в один из этих минимумов, часть Вселенной, в которую мы попали в этот минимум, она начинала быть экспоненциально большой. Эта начинала быть экспоненциально большой, эта… И Вселенная разбилась на экспоненциально большое количество частей экспоненциально большого размера. Со всеми возможными типами физики в каждой из них.

Что это означает? Что, во-первых, может быть много скалярных полей. Во-вторых, может быть много разных минимумов. И после этого, в зависимости от того, куда мы попали, Вселенная могла стать разбитой на большие, экспоненциально большие области, каждая из которых по всем своим свойствам выглядит - локально - как огромная Вселенная. Каждая из них имеет огромные размеры. Если мы в ней живем, мы не будем знать, что другие части Вселенной существуют. А законы физики, эффективно, там будут разные.

То есть, в действительности, закон физики - он один и тот же может быть, у вас имеется одна и та же теория, - но это так же, как вода, которая может быть жидкой, газообразной, твердой. Но рыба может жить только в жидкой воде. Мы можем жить только вот в этом минимуме. Поэтому мы там и живем. Не потому, что этих частей Вселенной нет, а потому, что мы можем жить только здесь. Вот возникает эта картина, которая и называется «многоликая Вселенная», или «Multiverse» вместо «Universe».

Другим языком. Мы знаем, что наши свойства определяются генетическим кодом - кодом, который нам достался в наследство от наших родителей. Мы знаем также, что существуют мутации. Мутации происходят, когда что-нибудь странное происходит. Когда космические лучи, когда какая-нибудь химия не та - ну, вы лучше меня знаете, что нужно для того, чтобы мутации происходили. А мы знаем также, что всё вот огромное количество видов - необходимо было, чтобы эти мутации были.

Так вот, во время расширения Вселенной тоже были мутации. У вас Вселенная, даже если с самого начала она находилась в одном минимуме, то после этого она начинала прыгать из одного минимума в другой и разбивалась на разные типы Вселенной. И вот этот механизм квантовых флуктуаций, которые перебрасывали Вселенную из одного места, из одного состояния в другое - их можно назвать… это можно назвать механизмом космических мутаций.


(К сожалению, здесь, конечно, не видно часть того, что я собирался показывать. Ну, словами, значит… ) Ландшафт. Возникла такая терминология, потому что эта терминология, эта картинка оказалась очень важной в контексте теории струн. Люди уже давно говорили про теорию струн как лидирующего кандидата на теорию всех взаимодействий. Я в этом месте, к сожалению, «плаваю»… Хотя я и являюсь одним из соавторов вот этой картинки, которая здесь есть. То есть в течение многих лет люди не знали, как с помощью теории струн описать наше четырехмерное пространство.

Дело в том, что теорию струн легче всего сформулировать в десятимерном пространстве. Но в десятимерном пространстве шесть измерений являются лишними, надо как-нибудь от них отделаться. Идея состоит в том, что их надо как-нибудь сжать в маленький клубочек, чтобы их никто не видел, чтобы в шесть направлений никак никто не мог пойти, а мы видели бы только четыре большие измерения - три пространства и одно время. И вот мы гуляли бы в этих трех пространственных измерениях и думали бы, что наша Вселенная трехмерная плюс одно время, а в действительности где-то в сердце Вселенной хранилась бы информация о том, что она происхождение имеет пролетарское - десятимерное. И хотелось бы ей стать десятимерной тоже. Вот в теории струн так всё время получалось, что она хочет быть десятимерной, и до последнего времени не знали, как сделать ее четырехмерной, оставить ее нормальной. Во всех вариантах получалось, что это состояние неустойчивое.