Метод гаусса описание. Метод гаусса онлайн

Карл Фридрих Гаусс, величайший математик долгое время колебался, выбирая между философией и математикой. Возможно, именно такой склад ума позволил ему столь заметно "наследить" в мировой науке. В частности, создав "Метод Гаусса" ...

Почти 4 года статьи этого сайта касались школьного образования, в основном, со стороны философии, принципов (не)понимания, внедряемых в сознание детей. Приходит время бОльшей конкретики, примеров и методов... Я верю, что именно такой подход к привычным, запутанным и важным областям жизни дает лучшие результаты.

Мы, люди так устроены, что сколько ни говори об абстрактном мышлении , но понимание всегда происходит через примеры . Если примеры отсутствуют, то принципы уловить невозможно... Как невозможно оказаться на вершине горы иначе, как пройдя весь ее склон от подножия.

Тоже и со школой: пока живых историй недостаточно мы инстинктивно продолжаем считать ее местом, где детей учат понимать.

Например, обучая методу Гаусса...

Метод Гаусса в 5 классе школы

Оговорюсь сразу: метод Гаусса имеет гораздо более широкое применение, например, при решении систем линейных уравнений . То, о чем мы будем говорить, проходят в 5 классе. Это начала , уяснив которые, гораздо легче разобраться в более "продвинутых вариантах". В этой статье мы говорим о методе (способе) Гаусса при нахождении суммы ряда

Вот пример, который принес из школы мой младший сын, посещающий 5 класс московской гимназии.

Школьная демонстрация метода Гаусса

Учитель математики с использованием интерактивной доски (современные методы обучения ) показал детям презентацию истории "создания метода" маленьким Гауссом.

Школьный учитель выпорол маленького Карла (устаревший метод, нынче в школах не применяется) за то, что тот,

вместо того, чтобы последовательно складывая числа от 1 до 100 найти их сумму заметил , что пары чисел, равно отстоящие от краев арифметической прогрессии, в сумме дают одно и то же число. например, 100 и 1, 99 и 2. Посчитав количество таких пар, маленький Гаусс почти моментально решил предложенную учителем задачу. За что и был подвергнут экзекуции на глазах изумленной публики. Чтобы остальным думать было неповадно.

Что сделал маленький Гаусс, развивший чувство числа ? Заметил некоторую особенность числового ряда с постоянным шагом (арифметической прогрессии). И именно это сделало его впоследствии великим ученым, умеющим замечать , обладающим чувством, инстинктом понимания .

Этим и ценна математика, развивающая способность видеть общее в частном - абстрактное мышление . Поэтому большинство родителей и работодателей инстинктивно считают математику важной дисциплиной ...

"Математику уже затем учить надо, что она ум в порядок приводит.
М.В.Ломоносов".

Однако, последователи тех, кто порол розгами будущих гениев, превратили Метод в нечто противоположное. Как 35 лет назад говорил мой научный руководитель: "Занаучили вопрос". Или как сказал вчера о методе Гаусса мой младший сын: "Может не стоит из этого большую науку делать-то, а?"

Последствия творчества "ученых" видны по уровню нынешней школьной математики, уровню ее преподавания и понимания "Царицы наук" большинством.

Однако, продолжим...

Методы объяснения метода Гаусса в 5 классе школы

Учитель математики московской гимназии, объясняя метод Гаусса по-Виленкину, усложнил задание.

Что, если разность (шаг) арифметической прогрессии будет не единица, а другое число? Например, 20.

Задача, которую он дал пятиклассникам:


20+40+60+80+ ... +460+480+500


Прежде, чем познакомиться с гимназическим методом, заглянем в Сеть: как это делают школьные учителя - репетиторы по математике?..

Метод Гаусса: объяснение №1

Известный репетитор на своем канале YOUTUBE приводит следующие рассуждения:

"запишем числа от 1 до 100 следующим образом:

сначала ряд чисел от 1 до 50, а строго под ним другой ряд чисел от 50 до 100, но в обратной последовательности"


1, 2, 3, ... 48, 49, 50

100, 99, 98 ... 53, 52, 51

"Обратите внимание: сумма каждой пары чисел из верхнего и нижнего рядов одинакова и равняется 101 ! Посчитаем количество пар, оно составляет 50 и умножим сумму одной пары на количество пар! Вуаля: Ответ готов!".

"Если вы не смогли понять - не расстраивайтесь!", - три раза в процессе объяснения повторил учитель. "Этот метод вы будете проходить в 9 классе!"

Метод Гаусса: объяснение №2

Другой репетитор, менее известный (судя по числу просмотров) использует более научный подход, предлагая алгоритм решения из 5 пунктов, которые необходимо выполнить последовательно.

Для непосвященных: 5 это одно из чисел Фибоначчи, традиционно считающееся магическим. Метод из 5 шагов всегда более научен, чем метод, например, из 6 шагов. ... И это вряд ли случайность, скорее всего, Автор - скрытый приверженец теории Фибоначчи

Дана арифметическая прогрессия: 4, 10, 16 ... 244, 250, 256 .

Алгоритм нахождения суммы чисел ряда методом Гаусса:


  • Шаг 1: переписать заданную последовательность чисел наоборот, точно под первой.
  • 4, 10, 16 ... 244, 250, 256

    256, 250, 244 ... 16, 10, 4

  • Шаг 2: посчитать суммы пар чисел, расположенных в вертикальных рядах: 260.
  • Шаг 3: посчитать, сколько таких пар в числовом ряду. Для этого вычесть из максимального числа числового ряда минимальное и разделить на величину шага: (256 - 4) / 6 = 42.
  • При этом нужно помнить о правиле "Плюс один" : к полученному частному необходимо прибавить единицу: иначе мы получим результат, меньший на единицу, чем истинное число пар: 42 + 1 = 43.

  • Шаг 4: умножить сумму одной пары чисел на количество пар: 260 х 43 = 11 180
  • Шаг5: поскольку мы посчитали сумму пар чисел , то полученную сумму следует разделить на два: 11 180 / 2 = 5590.
  • Это и есть искомая сумма арифметической прогрессии от 4 до 256 с разницей 6 !

    Метод Гаусса: объяснение в 5 классе московской гимназии

    А вот как требовалось решить задачу нахождения суммы ряда:

    20+40+60+ ... +460+480+500

    в 5 классе московской гимназии, учебник Виленкина (со слов моего сына).

    Показав презентацию, учительница математики показала пару примеров по методу Гаусса и дала классу задачу по нахождению суммы чисел ряда с шагом 20.

    При этом требовалось следующее:

  • Шаг 1: обязательно записать в тетради все числа ряда от 20 до 500 (с шагом 20).
  • Шаг 2: записать последовательно слагаемые - пары чисел: первого с последним, второго с предпоследним и т.д. и посчитать их суммы.
  • Шаг 3: посчитать "сумму сумм" и найти сумму всего ряда.
  • Как видим, это более компактная и эффективная методика: число 3 - также член последовательности Фибоначчи

    Мои комментарии к школьной версии метода Гаусса

    Великий математик определенно выбрал бы философию, если бы предвидел, во что превратят его "метод" последователи немецкого учителя , выпоровшего Карла розгами. Он узрел бы и символизм, и диалектическую спираль и неумирающую глупость "учителей", пытающихся измерить алгеброй непонимания гармонию живой математической мысли ....

    Между прочим: знаете ли вы. что наша система образования уходит корнями в немецкую школу 18 - 19 веков?

    Но Гаусс выбрал математику.

    В чем суть его метода?

    В упрощении . В наблюдении и схватывании простых закономерностей чисел. В превращении сухой школьной арифметики в интересное и увлекательное занятие , активизирующее в мозге желание продолжать, а не блокирующее высокозатратную умственную деятельность.

    Разве возможно одной из приведенных "модификаций метода" Гаусса посчитать сумму чисел арифметической прогрессии почти моментально ? По "алгоритмам" маленький Карл гарантированно избежал бы порки, воспитал отвращение к математике и подавил на корню свои творческие импульсы.

    Почему репетитор так настойчиво советовал пятиклассникам "не бояться непонимания" метода, убеждая, что "такие" задачи они будут решать аж в 9 классе? Психологически безграмотное действие . Удачным приемом было отметить : "Видите? Вы уже в 5 классе можете решать задачи, которые будете проходить только через 4 года! Какие вы молодцы!".

    Для использования метода Гаусса достаточно уровня 3 класса , когда нормальные дети уже умеют складывать, умножать и делить 2 -3 значные числа. Проблемы возникают из-за неспособности взрослых учителей, "не въезжающих", как объяснить простейшие вещи нормальным человеческим языком, не то что математическим... Не способных заинтересовать математикой и напрочь отбивающих охоту даже у "способных".

    Или, как прокомментировал мой сын: "делающих из этого большую науку".

  • Как (в общем случае) узнать, на каком именно числе следует "развернуть" запись чисел в методе № 1?
  • Что делать, если количество членов ряда окажется нечетным ?
  • Зачем превращать в "Правило плюс 1" то, что ребенок мог просто усвоить еще в первом классе, если бы развивал "чувство числа", а не запоминал "счет через десяток"?
  • И, наконец: куда исчез НОЛЬ, гениальное изобретение, которому более 2 000 лет и которым современные учителя математики избегают пользоваться?!.
  • Метод Гаусса, мои объяснения

    Нашему ребенку мы с супругой объясняли этот "метод", кажется, еще до школы...

    Простота вместо усложнения или игра в вопросы - ответы

    ""Посмотри, вот числа от 1 до 100. Что ты видишь?"

    Дело не в том, что именно увидит ребенок. Фокус в том, чтобы он стал смотреть.

    "Как можно их сложить?" Сын уловил, что такие вопросы не задаются "просто так" и нужно взглянуть на вопрос "как-то по-другому, иначе, чем он делает обычно"

    Не важно, увидит ли ребенок решение сразу, это маловероятно. Важно, чтобы он перестал бояться смотреть, или как я говорю: "шевелил задачу" . Это начало пути к пониманию

    "Что легче: сложить, например, 5 и 6 или 5 и 95?" Наводящий вопрос... Но ведь любое обучение и сводится к "наведению" человека на "ответ" - любым приемлемым для него способом.

    На этом этапе уже могут возникнуть догадки о том, как "сэкономить" на вычислениях.

    Все, что мы сделали - намекнули: "лобовой, линейный" метод счета - не единственно возможный. Если ребенок это усек, то впоследствии он выдумает еще много таких методов, ведь это интересно!!! И он точно избежит "непонимания" математики, не будет испытывать к ней отвращение. Он получил победу!

    Если ребенок обнаружил , что сложение пар чисел, дающих в сумме сотню, плевое занятие, то "арифметическая прогрессия с разницей 1" - довольно муторная и неинтересная для ребенка вещь - вдруг для него обрела жизнь . Из хаоса возник порядок, а это всегда вызывает энтузиазм: так мы устроены !

    Вопрос на засыпку: зачем после полученного ребенком озарения вновь загонять его в рамки сухих алгоритмов, к тому же функционально бесполезных в этом случае?!

    Зачем заставлять тупо переписывать числа последовательности в тетрадь: чтобы даже у способных не возникло и единого шанса на понимание? Статистически, конечно, а ведь массовое образование заточено на "статистику" ...

    Куда делся ноль?

    И все-таки складывать числа, дающие в сумме 100 для ума гораздо более приемлемо, чем дающие 101 ...

    "Школьный метод Гаусса" требует именно этого: бездумно складывать равноотстоящие от центра прогрессии пары чисел, несмотря ни на что .

    А если посмотреть?

    Все-таки ноль - величайшее изобретение человечества, которому более 2 000 лет. А учителя математики продолжают его игнорировать.

    Гораздо проще преобразовать ряд чисел, начинающийся с 1, в ряд, начинающийся с 0. Сумма ведь не изменится, не правда ли? Нужно перестать "думать учебниками" и начать смотреть... И увидеть, что пары с суммой 101 вполне можно заменить парами с суммой 100 !

    0 + 100, 1 + 99, 2 + 98 ... 49 + 51

    Как упразднить "правило плюс 1"?

    Если честно, то я о таком правиле впервые услышал от того ютубовского репетитора...

    Как я до сих пор поступаю, когда требуется определить количество членов какого-нибудь ряда?

    Смотрю на последовательность:

    1, 2, 3, .. 8, 9, 10

    а когда совсем устал, то на более простой ряд:

    1, 2, 3, 4, 5

    и прикидываю: если вычесть из 5 единицу, то получится 4, но я совершенно ясно вижу 5 чисел! Следовательно, нужно прибавить единицу! Чувство числа, развитое в начальной школе, подсказывает: даже если членов ряда будет целый гугл (10 в сотой степени), закономерность останется той же.

    На фиг правила?..

    Чтобы через пару - тройку лет заполнить все пространство между лбом и затылком и перестать соображать? А зарабатывать на хлеб с маслом как? Ведь мы ровными шеренгами движемся в эпоху цифровой экономики!

    Еще о школьном методе Гаусса: "зачем науку-то из этого делать?.."

    Я не зря разместил скриншот из тетрадки сына...

    "Что там было, на уроке?"

    "Ну, я сосчитал сразу, поднял руку, но она не спросила. Поэтому, пока остальные считали я стал делать ДЗ по русскому языку, чтобы не тратить время. Потом, когда остальные дописали (???), она вызвала меня к доске. Я сказал ответ."

    "Правильно, покажи, как ты решал", - сказала учительница. Я показал. Она сказала: "Неправильно, нужно считать так, как я показала!"

    "Хорошо, что двойку не поставила. И заставила написать в тетради "ход решения" по-ихнему. Зачем науку-то большую из этого делать?.."

    Главное преступление учителя математики

    Вряд ли после того случая Карл Гаусс испытал высокое чувство уважения по отношению к школьному учителю математики. Но если бы он знал, как последователи того учителя извратят самую суть метода ... он взревел бы от негодования и через Всемирную организацию интеллектуальной собственности ВОИС добился запрета на использование своего честного имени в школьных учебниках!..

    В чем главная ошибка школьного подхода ? Или, как я выразился - преступление школьных учителей математики против детей?

    Алгоритм непонимания

    Что делают школьные методисты, абсолютное большинство которых думать не умеет ни фига?

    Создают методики и алгоритмы (см. ). Это защитная реакция, предохраняющая учителей от критики ("Все делается согласно..."), а детей - от понимания. И таким образом - от желания критиковать учителей! (Вторая производная чиновничьей "мудрости", научный подход к проблеме ). Человек не улавливая смысл скорее будет пенять на собственное непонимание, а не на тупость школьной системы.

    Что и происходит: родители пеняют на детей, а учителя... то же на детей, "не понимающих математику!..

    Смекаете?

    Что сделал маленький Карл?

    Абсолютно нешаблонно подошел к шаблонной задаче . Это квинтэссенция Его подхода. Это главное, чему следует учить в школе: думать не учебниками, а головой . Конечно, есть и инструментальная составляющая, которую вполне можно использовать... в поисках более простых и эффективных методов счета .

    Метод Гаусса по-Виленкину

    В школе учат, что метод Гаусса состоит в том, чтобы

  • попарно находить суммы чисел, равноотстоящих от краев числового ряда, непременно начиная с краев !
  • находить число таких пар и т.д.
  • что, если число элементов ряда окажется нечетным , как в задаче, которую задали сыну?..

    "Подвох" состоит в том, что в этом случае следует обнаружить "лишнее" число ряда и прибавить его к сумме пар. В нашем примере это число 260 .

    Как обнаружить? Переписывая все пары чисел в тетрадь! (Именно почему учительница заставила детей делать эту тупую работу, пытаясь научить "творчеству" методом Гаусса... И именно поэтому такой "метод" практически неприменим к большим рядам данных, И именно поэтому он не является методом Гаусса).

    Немного творчества в школьной рутине...

    Сын же поступил иначе.

  • Сначала он отметил, что умножать легче число 500, а не 520
  • (20 + 500, 40 + 480 ...).

  • Потом он прикинул: количество шагов оказалось нечетным: 500 / 20 = 25.
  • Тогда он в начало ряда добавил НОЛЬ (хотя можно было и отбросить последний член ряда, что также обеспечило бы четность) и сложил числа, дающие в сумме 500
  • 0+500, 20+480, 40+460 ...

  • 26 шагов это 13 пар "пятисоток": 13 х 500 = 6500..
  • Если мы отбросили последний член ряда, то пар будет 12, но к результату вычислений следует не забыть прибавить "отброшенную" пятисотку. Тогда: (12 х 500) + 500 = 6500 !

  • Несложно, правда?

    А практически делается еще легче, что и позволяет выкроить 2-3 минуты на ДЗ по русскому, пока остальные "считают". К тому же сохраняет количество шагов методики: 5, что не позволяет критиковать подход за антинаучность.

    Явно этот подход проще, быстрее и универсальнее, в стиле Метода. Но... учительница не то, что не похвалила, но и заставила переписать "правильным образом" (см. скриншот). То есть предприняла отчаянную попытку задушить творческий импульс и способность понимать математику на корню! Видимо, чтобы потом наняться репетитором... Не на того напала...


    Все, что я так долго и нудно описал можно объяснить нормальному ребенку максимум за полчаса. Вместе с примерами.

    Причем так, что он это никогда не забудет.

    И это будет шаг к пониманию ... не только математики.

    Признайтесь: сколько раз в жизни вы складывали методом Гаусса? И я ни разу!

    Но инстинкт понимания , который развивается (или гасится) в процессе изучения математических методов в школе... О!.. Это поистине незаменимая вещь!

    Особенно в век всеобщей цифровизации, в который мы незаметно вошли под чутким руководством Партии и Правительства.

    Несколько слов в защиту учителей...

    Несправедливо и неправильно всю ответственность за такой стиль обучения сваливать исключительно на школьных учителей. Действует система.

    Некоторые учителя понимают абсурдность происходящего, но что делать? Закон об образовании, ФГОСы, методики, технологические карты уроков... Все должно делаться "в соответствии и на основании" и все должно быть задокументировано. Шаг в сторону - встал в очередь на увольнение. Не будем ханжами: зарплата московских учителей ну очень неплохая... Уволят - куда идти?..

    Поэтому сайт этот не об образовании . Он об индивидуальном образовании , единственно возможном способе выбраться из толпы поколения Z ...

    Метод Гаусса, называемый также методом последовательного исключения неизвестных, состоит в следующем. При помощи элементарных преобразований систему линейных уравнений приводят к такому виду, чтобы её матрица из коэффициентов оказалась трапециевидной (то же самое, что треугольной или ступенчатой) или близкой к трапециевидной (прямой ход метода Гаусса, далее - просто прямой ход). Пример такой системы и её решения - на рисунке сверху.

    В такой системе последнее уравнение содержит только одну переменную и её значение можно однозначно найти. Затем значение этой переменной подставляют в предыдущее уравнение (обратный ход метода Гаусса , далее - просто обратный ход), из которого находят предыдущую переменную, и так далее.

    В трапециевидной (треугольной) системе, как видим, третье уравнение уже не содержит переменных y и x , а второе уравнение - переменной x .

    После того, как матрица системы приняла трапециевидную форму, уже не представляет труда разобраться в вопросе о совместности системы, определить число решений и найти сами решения.

    Преимущества метода:

    1. при решении систем линейных уравнений с числом уравнений и неизвестных более трёх метод Гаусса не такой громоздкий, как метод Крамера , поскольку при решении методом Гаусса необходимо меньше вычислений;
    2. методом Гаусса можно решать неопределённые системы линейных уравнений, то есть, имеющие общее решение (и мы разберём их на этом уроке), а, используя метод Крамера, можно лишь констатировать, что система неопределённа;
    3. можно решать системы линейных уравнений, в которых число неизвестных не равно числу уравнений (также разберём их на этом уроке);
    4. метод основан на элементарных (школьных) методах - методе подстановки неизвестных и методе сложения уравнений, которых мы коснулись в соответствующей статье.

    Чтобы все прониклись простотой, с которой решаются трапециевидные (треугольные, ступенчатые) системы линейных уравнений, приведём решение такой системы с применением обратного хода. Быстрое решение этой системы было показано на картинке в начале урока.

    Пример 1. Решить систему линейных уравнений, применяя обратный ход:

    Решение. В данной трапециевидной системе переменная z однозначно находится из третьего уравнения. Подставляем её значение во второе уравнение и получаем значение переменой y :

    Теперь нам известны значения уже двух переменных - z и y . Подставляем их в первое уравнение и получаем значение переменной x :

    Из предыдущих шагов выписываем решение системы уравнений:

    Чтобы получить такую трапециевидную систему линейных уравнений, которую мы решили очень просто, требуется применять прямой ход, связанный с элементарными преобразованиями системы линейных уравнений. Это также не очень сложно.

    Элементарные преобразования системы линейных уравнений

    Повторяя школьный метод алгебраического сложения уравнений системы, мы выяснили, что к одному из уравнений системы можно прибавлять другое уравнение системы, причём каждое из уравнений может быть умножено на некоторые числа. В результате получаем систему линейных уравнений, эквивалентную данной. В ней уже одно уравнение содержало только одну переменную, подставляя значение которой в другие уравнений, мы приходим к решению. Такое сложение - один из видов элементарного преобразования системы. При использовании метода Гаусса можем пользоваться несколькими видами преобразований.

    На анимации выше показано, как система уравнений постепенно превращается в трапециевидную. То есть такую, которую вы видели на самой первой анимации и сами убедились в том, что из неё просто найти значения всех неизвестных. О том, как выполнить такое превращение и, конечно, примеры, пойдёт речь далее.

    При решении систем линейных уравнений с любым числом уравнений и неизвестных в системе уравнений и в расширенной матрице системы можно :

    1. переставлять местами строки (это и было упомянуто в самом начале этой статьи);
    2. если в результате других преобразований появились равные или пропорциональные строки, их можно удалить, кроме одной;
    3. удалять "нулевые" строки, где все коэффициенты равны нулю;
    4. любую строку умножать или делить на некоторое число;
    5. к любой строке прибавлять другую строку, умноженное на некоторое число.

    В результате преобразований получаем систему линейных уравнений, эквивалентную данной.

    Алгоритм и примеры решения методом Гаусса системы линейных уравнений с квадратной матрицей системы

    Рассмотрим сначала решение систем линейных уравений, в которых число неизвестных равно числу уравнений. Матрица такой системы - квадратная, то есть в ней число строк равно числу столбцов.

    Пример 2. Решить методом Гаусса систему линейных уравнений

    Решая системы линейных уравнений школьными способами, мы почленно умножали одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами. При сложении уравнений происходит исключение этой переменной. Аналогично действует и метод Гаусса.

    Для упрощения внешнего вида решения составим расширенную матрицу системы :

    В этой матрице слева до вертикальной черты расположены коэффициенты при неизвестных, а справа после вертикальной черты - свободные члены.

    Для удобства деления коэффициентов при переменных (чтобы получить деление на единицу) переставим местами первую и вторую строки матрицы системы . Получим систему, эквивалентную данной, так как в системе линейных уравнений можно переставлять местами уравнения:

    С помощью нового первого уравнения исключим переменную x из второго и всех последующих уравнений . Для этого ко второй строке матрицы прибавим первую строку, умноженную на (в нашем случае на ), к третьей строке – первую строку, умноженную на (в нашем случае на ).

    Это возможно, так как

    Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям первую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

    В результате получим матрицу эквивалентную данной системе новой системы уравнений, в которой все уравнения, начиная со второго не содержат переменнную x :

    Для упрощения второй строки полученной системы умножим её на и получим вновь матрицу системы уравнений, эквивалентной данной системе:

    Теперь, сохраняя первое уравнение полученной системы без изменений, с помощью второго уравнения исключаем переменную y из всех последующих уравнений. Для этого к третьей строке матрицы системы прибавим вторую строку, умноженную на (в нашем случае на ).

    Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям вторую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

    В результате вновь получим матрицу системы, эквивалентной данной системе линейных уравнений:

    Мы получили эквивалентную данной трапециевидную систему линейных уравнений:

    Если число уравнений и переменных больше, чем в нашем примере, то процесс последовательного исключения переменных продолжается до тех пор, пока матрица системы не станет трапециевидной, как в нашем демо-примере.

    Решение найдём "с конца" - обратный ход . Для этого из последнего уравнения определим z :
    .
    Подставив это значение в предшествующее уравнение, найдём y :

    Из первого уравнения найдём x :

    Ответ: решение данной системы уравнений - .

    : в этом случае будет выдан тот же ответ, если система имеет однозначное решение. Если же система имеет бесконечное множество решений, то таков будет и ответ, и это уже предмет пятой части этого урока.

    Решить систему линейных уравнений методом Гаусса самостоятельно, а затем посмотреть решение

    Перед нами вновь пример совместной и определённой системы линейных уравнений, в которой число уравнений равно числу неизвестных. Отличие от нашего демо-примера из алгоритма - здесь уже четыре уравнения и четыре неизвестных.

    Пример 4. Решить систему линейных уравнений методом Гаусса:

    Теперь нужно с помощью второго уравнения исключить переменную из последующих уравнений. Проведём подготовительные работы. Чтобы было удобнее с отношением коэффициентов, нужно получить единицу в во втором столбце второй строки. Для этого из второй строки вычтем третью, а полученную в результате вторую строку умножим на -1.

    Проведём теперь собственно исключение переменной из третьего и четвёртого уравнений. Для этого к третьей строке прибавим вторую, умноженную на , а к четвёртой - вторую, умноженную на .

    Теперь с помощью третьего уравнения исключим переменную из четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на . Получаем расширенную матрицу трапециевидной формы.

    Получили систему уравнений, которой эквивалентна заданная система:

    Следовательно, полученная и данная системы являются совместными и определёнными. Окончательное решение находим «с конца». Из четвёртого уравнения непосредственно можем выразить значение переменной "икс четвёртое":

    Это значение подставляем в третье уравнение системы и получаем

    ,

    ,

    Наконец, подстановка значений

    В первое уравнение даёт

    ,

    откуда находим "икс первое":

    Ответ: данная система уравнений имеет единственное решение .

    Проверить решение системы можно и на калькуляторе, решающем методом Крамера : в этом случае будет выдан тот же ответ, если система имеет однозначное решение.

    Решение методом Гаусса прикладных задач на примере задачи на сплавы

    Системы линейных уравнений применяются для моделирования реальных объектов физического мира. Решим одну из таких задач - на сплавы. Аналогичные задачи - задачи на смеси, стоимость или удельный вес отдельных товаров в группе товаров и тому подобные.

    Пример 5. Три куска сплава имеют общую массу 150 кг. Первый сплав содержит 60% меди, второй - 30%, третий - 10%. При этом во втором и третьем сплавах вместе взятых меди на 28,4 кг меньше, чем в первом сплаве, а в третьем сплаве меди на 6,2 кг меньше, чем во втором. Найти массу каждого куска сплава.

    Решение. Составляем систему линейных уравнений:

    Умножаем второе и третье уравнения на 10, получаем эквивалентную систему линейных уравнений:

    Составляем расширенную матрицу системы:

    Внимание, прямой ход. Путём сложения (в нашем случае - вычитания) одной строки, умноженной на число (применяем два раза) с расширенной матрицей системы происходят следующие преобразования:

    Прямой ход завершился. Получили расширенную матрицу трапециевидной формы.

    Применяем обратный ход. Находим решение с конца. Видим, что .

    Из второго уравнения находим

    Из третьего уравнения -

    Проверить решение системы можно и на калькуляторе, решающем методом Крамера : в этом случае будет выдан то же ответ, если система имеет однозначное решение.

    О простоте метода Гаусса говорит хотя бы тот факт, что немецкому математику Карлу Фридриху Гауссу на его изобретение потребовалось лишь 15 минут. Кроме метода его имени из творчества Гаусса известно изречение "Не следует смешивать то, что нам кажется невероятным и неестественным, с абсолютно невозможным" - своего рода краткая инструкция по совершению открытий.

    Во многих прикладных задачах может и не быть третьего ограничения, то есть, третьего уравнения, тогда приходится решать методом Гаусса систему двух уравнений с тремя неизвестными, или же, наоборот - неизвестных меньше, чем уравнений. К решению таких систем уравнений мы сейчас и приступим.

    С помощью метода Гаусса можно установить, совместна или несовместна любая система n линейных уравнений с n переменными.

    Метод Гаусса и системы линейных уравнений, имеющие бесконечное множество решений

    Следующий пример - совместная, но неопределённая система линейных уравнений, то есть имеющая бесконечное множество решений.

    После выполнения преобразований в расширенной матрице системы (перестановки строк, умножения и деления строк на некоторое число, прибавлению к одной строке другой) могли появиться строки вида

    Если во всех уравнениях имеющих вид

    Свободные члены равны нулю, то это означает, что система неопределённа, то есть имеет бесконечное множество решений, а уравнения этого вида – «лишние» и их исключаем из системы.

    Пример 6.

    Решение. Составим расширенную матрицу системы. Затем с помощью первого уравнения исключим переменную из последующих уравнений. Для этого ко второй, третьей и четвёртой строкам прибавим первую, умноженную соответственно на :

    Теперь вторую строку прибавим к третьей и четвёртой.

    В результате приходим к системе

    Последние два уравнения превратились в уравнения вида . Эти уравнения удовлетворяются при любых значениях неизвестных и их можно отбросить.

    Чтобы удовлетворить второму уравнению, мы можем для и выбрать произвольные значения , тогда значение для определится уже однозначно: . Из первого уравнения значение для также находится однозначно: .

    Как заданная, так и последняя системы совместны, но неопределённы, и формулы

    при произвольных и дают нам все решения заданной системы.

    Метод Гаусса и системы линейных уравнений, не имеющие решений

    Следующий пример - несовместная система линейных уравнений, то есть не имеющая решений. Ответ на такие задачи так и формулируется: система не имеет решений.

    Как уже говорилось в связи с первым примером, после выполнения преобразований в расширенной матрице системы могли появиться строки вида

    соответствующие уравнению вида

    Если среди них есть хотя бы одно уравнение с отличным от нуля свободным членом (т.е. ), то данная система уравнений является несовместной, то есть не имеет решений и на этом её решение закончено.

    Пример 7. Решить методом Гаусса систему линейных уравнений:

    Решение. Составляем расширенную матрицу системы. С помощью первого уравнения исключаем из последующих уравнений переменную . Для этого ко второй строке прибавляем первую, умноженную на , к третьей строке - первую, умноженную на , к четвёртой - первую, умноженную на .

    Теперь нужно с помощью второго уравнения исключить переменную из последующих уравнений. Чтобы получить целые отношения коэффициентов, поменяем местами вторую и третью строки расширенной матрицы системы.

    Для исключения из третьего и четвёртого уравнения к третьей строке прибавим вторую, умноженную на , а к четвёртой - вторую, умноженную на .

    Теперь с помощью третьего уравнения исключим переменную из четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на .

    Заданная система эквивалентна, таким образом, следующей:

    Полученная система несовместна, так как её последнее уравнение не может быть удовлетворено никакими значениями неизвестных. Следовательно, данная система не имеет решений.

    Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса , состо­ящий в последовательном исключении неизвестных.

    Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются приэлементарных преобразованиях уравнений системы:

      умножение обеих частей уравнения на число отличное от нуля;

      прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

      перестановка двух уравнений.

    Пусть дана система уравнений

    Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому , илитреугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

    Предположим, что коэффициент данной системы
    , в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент прибыл отличен от нуля.

    Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

    Здесь
    – новые значения коэффициентов и свободных членов, которые получаются после первого шага.

    Аналогичным образом, считая главным элементом
    , исклю­чим неизвестноеиз всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

    ,

    где ,
    ,…,– главные элементы системы
    .

    Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида
    , их отбрасывают, так как им удовлетворяют любые наборы чисел
    . Если же при
    появится уравнение вида, которое не имеет решений, то это свидетельствует о несовместности системы.

    При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные
    , которые называютсвободными . Затем выражение переменнойиз последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная
    . Аналогичным образом последовательно определяются переменные
    . Переменные
    , выраженные через свободные переменные, называютсябазисными (зависимыми). В результате получается общее решение системы линейных уравнений.

    Чтобы найти частное решение системы, свободным неизвестным
    в общем решении придаются произвольные значения и вычисляются значения переменных
    .

    Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

    .

    Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных
    не равно числу уравнений
    .

    Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу
    к ступенчатому виду, легко определить ранги матрицыи расширенной матрицы
    и применитьтеорему Кронекера - Капелли .

    Пример 2.1 Методом Гаусса решить систему

    Решение . Число уравнений
    и число неизвестных
    .

    Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов.

    Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

    Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

    Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

    Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.




    .

    В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

    Так как , система является совместной и определенной.

    Соответствующая последней матрице система уравнений имеет треугольный вид:

    Из последнего (третьего) уравнения
    . Подставим во второе уравнение и получим
    .

    Подставим
    и
    в первое уравнение, найдём


    .

    Еще с начала XVI-XVIII веков математики усиленно начали изучать функции, благодаря которым так много в нашей жизни изменилось. Компьютерная техника без этих знаний просто не существовала бы. Для решения сложных задач, линейных уравнений и функций были созданы различные концепции, теоремы и методики решения. Одним из таких универсальных и рациональных способов и методик решения линейных уравнений и их систем стал и метод Гаусса. Матрицы, их ранг, детерминант - все можно посчитать, не используя сложных операций.

    Что представляет собой СЛАУ

    В математике существует понятие СЛАУ - система линейных алгебраических уравнений. Что же она собой представляет? Это набор из m уравнений с искомыми n неизвестными величинами, обычно обозначающимися как x, y, z, или x 1 , x 2 … x n, или другими символами. Решить методом Гаусса данную систему - означает найти все искомые неизвестные. Если система имеет одинаковое число неизвестных и уравнений, тогда она называется системой n-го порядка.

    Наиболее популярные методы решения СЛАУ

    В учебных заведениях среднего образования изучают различные методики решения таких систем. Чаще всего это простые уравнения, состоящие из двух неизвестных, поэтому любой существующий метод для поиска ответа на них не займет много времени. Это может быть как метод подстановки, когда из одного уравнения выводится другое и подставляется в изначальное. Или метод почленного вычитания и сложения. Но наиболее легким и универсальным считается метод Гаусса. Он дает возможность решать уравнения с любым количеством неизвестных. Почему именно эта методика считается рациональной? Все просто. Матричный способ хорош тем, что здесь не требуется по несколько раз переписывать ненужные символы в виде неизвестных, достаточно проделать арифметические операции над коэффициентами - и получится достоверный результат.

    Где используются СЛАУ на практике

    Решением СЛАУ являются точки пересечения прямых на графиках функций. В наш высокотехнологический компьютерный век людям, которые тесно связаны с разработкой игр и прочих программ, необходимо знать, как решать такие системы, что они представляют и как проверить правильность получившегося результата. Наиболее часто программисты разрабатывают специальные программы-вычислители линейной алгебры, сюда входит и система линейных уравнений. Метод Гаусса позволяет высчитать все существующие решения. Также используются и другие упрощенные формулы и методики.

    Критерий совместимости СЛАУ

    Такую систему можно решить только в том случае, если она совместима. Для понятности представим СЛАУ в виде Ax=b. Она имеет решение, если rang(A) равняется rang(A,b). В этом случае (A,b) - это матрица расширенного вида, которую можно получить из матрицы А, переписав ее со свободными членами. Выходит, что решить линейные уравнения методом Гаусса достаточно легко.

    Возможно, некоторые обозначения не совсем понятны, поэтому необходимо рассмотреть все на примере. Допустим, есть система: x+y=1; 2x-3y=6. Она состоит всего из двух уравнений, в которых 2 неизвестные. Система будет иметь решение только в том случае, если ранг ее матрицы будет равняться рангу расширенной матрицы. Что такое ранг? Это число независимых строк системы. В нашем случае ранг матрицы 2. Матрица А будет состоять из коэффициентов, находящихся возле неизвестных, а в расширенную матрицу вписываются и коэффициенты, находящиеся за знаком «=».

    Почему СЛАУ можно представить в матричном виде

    Исходя из критерия совместимости по доказанной теореме Кронекера-Капелли, систему линейных алгебраических уравнений можно представить в матричном виде. Применяя каскадный метод Гаусса, можно решить матрицу и получить единственный достоверный ответ на всю систему. Если ранг обычной матрицы равняется рангу ее расширенной матрицы, но при этом меньше количества неизвестных, тогда система имеет бесконечное количество ответов.

    Преобразования матриц

    Прежде чем переходить к решению матриц, необходимо знать, какие действия можно проводить над их элементами. Существует несколько элементарных преобразований:

    • Переписывая систему в матричный вид и осуществляя ее решение, можно умножать все элементы ряда на один и тот же коэффициент.
    • Для того чтобы преобразовать матрицу в канонический вид, можно менять местами два параллельных ряда. Канонический вид подразумевает, что все элементы матрицы, которые расположены по главной диагонали, становятся единицами, а оставшиеся - нулями.
    • Соответствующие элементы параллельных рядов матрицы можно прибавлять один к другому.

    Метод Жордана-Гаусса

    Суть решения систем линейных однородных и неоднородных уравнений методом Гаусса в том, чтобы постепенно исключить неизвестные. Допустим, у нас есть система из двух уравнений, в которых две неизвестные. Чтобы их найти, необходимо проверить систему на совместимость. Уравнение методом Гаусса решается очень просто. Необходимо выписать коэффициенты, находящиеся возле каждого неизвестного в матричный вид. Для решения системы понадобится выписать расширенную матрицу. Если одно из уравнений содержит меньшее количество неизвестных, тогда на место пропущенного элемента необходимо поставить «0». К матрице применяются все известные методы преобразования: умножение, деление на число, прибавление соответствующих элементов рядов друг к другу и другие. Получается, что в каждом ряду необходимо оставить одну переменную со значением «1», остальные привести к нулевому виду. Для более точного понимания необходимо рассмотреть метод Гаусса на примерах.

    Простой пример решения системы 2х2

    Для начала возьмем простенькую систему алгебраических уравнений, в которой будет 2 неизвестных.

    Перепишем ее в расширенную матрицу.

    Чтобы решить данную систему линейных уравнений, требуется проделать всего две операции. Нам необходимо привести матрицу к каноническому виду, чтобы по главной диагонали стояли единицы. Так, переводя с матричного вида обратно в систему, мы получим уравнения: 1x+0y=b1 и 0x+1y=b2, где b1 и b2 - получившиеся ответы в процессе решения.

    1. Первое действие при решении расширенной матрицы будет таким: первый ряд необходимо умножить на -7 и прибавить соответственно отвечающие элементы ко второй строке, чтобы избавиться от одного неизвестного во втором уравнении.
    2. Так как решение уравнений методом Гаусса подразумевает приведение матрицы к каноническому виду, тогда необходимо и с первым уравнением проделать те же операции и убрать вторую переменную. Для этого вторую строку отнимаем от первой и получаем необходимый ответ - решение СЛАУ. Или, как показано на рисунке, вторую строку умножаем на коэффициент -1 и прибавляем к первой строке элементы второго ряда. Это одно и то же.

    Как видим, наша система решена методом Жордана-Гаусса. Переписываем ее в необходимую форму: x=-5, y=7.

    Пример решения СЛАУ 3х3

    Предположим, что у нас есть более сложная система линейных уравнений. Метод Гаусса дает возможность высчитать ответ даже для самой, казалось бы, запутанной системы. Поэтому, чтобы более глубоко вникнуть в методику расчета, можно переходить к более сложному примеру с тремя неизвестными.

    Как и в прежнем примере, переписываем систему в вид расширенной матрицы и начинаем приводить ее к каноническому виду.

    Для решения этой системы понадобится произвести гораздо больше действий, чем в предыдущем примере.

    1. Сначала необходимо сделать в первом столбце один единичный элемент и остальные нули. Для этого умножаем первое уравнение на -1 и прибавляем к нему второе уравнение. Важно запомнить, что первую строку мы переписываем в изначальном виде, а вторую - уже в измененном.
    2. Далее убираем эту же первую неизвестную из третьего уравнения. Для этого элементы первой строки умножаем на -2 и прибавляем их к третьему ряду. Теперь первая и вторая строки переписываются в изначальном виде, а третья - уже с изменениями. Как видно по результату, мы получили первую единицу в начале главной диагонали матрицы и остальные нули. Еще несколько действий, и система уравнений методом Гаусса будет достоверно решена.
    3. Теперь необходимо проделать операции и над другими элементами рядов. Третье и четвертое действие можно объединить в одно. Нужно разделить вторую и третью строку на -1, чтобы избавиться от минусовых единиц по диагонали. Третью строку мы уже привели к необходимому виду.
    4. Дальше приведем к каноническому виду вторую строку. Для этого элементы третьего ряда умножаем на -3 и прибавляем их ко второй строчке матрицы. Из результата видно, что вторая строка тоже приведена к необходимой нам форме. Осталось проделать еще несколько операций и убрать коэффициенты неизвестных из первой строки.
    5. Чтобы из второго элемента строки сделать 0, необходимо умножить третью строку на -3 и прибавить ее к первому ряду.
    6. Следующим решающим этапом будет прибавление к первой строке необходимые элементы второго ряда. Так мы получаем канонический вид матрицы, а, соответственно, и ответ.

    Как видно, решение уравнений методом Гаусса довольно простое.

    Пример решения системы уравнений 4х4

    Некоторые более сложные системы уравнений можно решить методом Гаусса посредством компьютерных программ. Необходимо вбить в существующие пустые ячейки коэффициенты при неизвестных, и программа сама пошагово рассчитает необходимый результат, подробно описывая каждое действие.

    Ниже описана пошаговая инструкция решения такого примера.

    В первом действии в пустые ячейки вписываются свободные коэффициенты и числа при неизвестных. Таким образом, получается такая же расширенная матрица, которую мы пишем вручную.

    И производятся все необходимые арифметические операции, чтобы привести расширенную матрицу к каноническому виду. Необходимо понимать, что не всегда ответ на систему уравнений - это целые числа. Иногда решение может быть из дробных чисел.

    Проверка правильности решения

    Метод Жордана-Гаусса предусматривает проверку правильности результата. Для того чтобы узнать, правильно ли посчитаны коэффициенты, необходимо всего-навсего подставить результат в изначальную систему уравнений. Левая сторона уравнения должна соответствовать правой стороне, находящейся за знаком "равно". Если ответы не совпадают, тогда необходимо пересчитывать заново систему или попробовать применить к ней другой известный вам метод решения СЛАУ, такой как подстановка или почленное вычитание и сложение. Ведь математика - это наука, которая имеет огромное количество различных методик решения. Но помните: результат должен быть всегда один и тот же, независимо от того, какой метод решения вы использовали.

    Метод Гаусса: наиболее часто встречающиеся ошибки при решении СЛАУ

    Во время решения линейных систем уравнений чаще всего возникают такие ошибки, как неправильный перенос коэффициентов в матричный вид. Бывают системы, в которых отсутствуют в одном из уравнений некоторые неизвестные, тогда, перенося данные в расширенную матрицу, их можно потерять. В результате при решении данной системы результат может не соответствовать действительному.

    Еще одной из главных ошибок может быть неправильное выписывание конечного результата. Нужно четко понимать, что первый коэффициент будет соответствовать первому неизвестному из системы, второй - второму, и так далее.

    Метод Гаусса подробно описывает решение линейных уравнений. Благодаря ему легко произвести необходимые операции и найти верный результат. Кроме того, это универсальное средство для поиска достоверного ответа на уравнения любой сложности. Может быть, поэтому его так часто используют при решении СЛАУ.

    Пусть дана система , ∆≠0. (1)
    Метод Гаусса – это метод последовательного исключения неизвестных.

    Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
    (2)
    Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
    .
    Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
    Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
    После n шагов вместо (1) получим равносильную систему
    (3)
    Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
    На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
    Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
    Если ε=0, то найденное решение x 0 является верным.

    Вычисления по методу Гаусса выполняются в два этапа:

    1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
    2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
    Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
    На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

    Назначение метода Гаусса

    Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

    Виды метода Гаусса

    1. Классический метод Гаусса;
    2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
    3. Метод Жордано-Гаусса;
    Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
    Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

    Пример решения методом Гаусса
    Решим систему:

    Для удобства вычислений поменяем строки местами:

    Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой

    Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

    Из 1-ой строки выражаем x 3:
    Из 2-ой строки выражаем x 2:
    Из 3-ой строки выражаем x 1:

    Пример решения методом Жордано-Гаусса
    Эту же СЛАУ решим методом Жордано-Гаусса.

    Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
    Разрешающий элемент равен (1).



    НЭ = СЭ - (А*В)/РЭ
    РЭ - разрешающий элемент (1), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
    Представим расчет каждого элемента в виде таблицы:

    x 1 x 2 x 3 B
    1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


    Разрешающий элемент равен (3).
    На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
    Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
    Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
    x 1 x 2 x 3 B
    0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


    Разрешающий элемент равен (-4).
    На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
    Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
    Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
    Представим расчет каждого элемента в виде таблицы:
    x 1 x 2 x 3 B
    0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


    Ответ : x 1 = 1, x 2 = 1, x 3 = 1

    Реализация метода Гаусса

    Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi , а также имеется реализация метода Гаусса в онлайн режиме .

    Использование метода Гаусса

    Применение метода Гаусса в теории игр

    В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

    Применение метода Гаусса при решении дифференциальных уравнений

    Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

    Применение метода Жордано-Гаусса в линейном программировании

    В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.