Корреляция, вычисление коэффициентов корреляции

Экономические данные представляют собой количественные характеристики каких-либо экономических объектов или процессов. Они формируются под действием множества факторов, не все из которых доступны внешнему контролю. Неконтролируемые факторы могут принимать случайные значения из некоторого множества значений и тем самым обусловливать случайность данных, которые они определяют. Одной из основных задач в экономических исследованиях является анализ зависимостей между переменными.

Рассматривая зависимости между признаками, необходимо выделить прежде всего два типа связей:

  • функциональные - характеризуются полным соответствием между изменением факторного признака и изменением результативной величины: каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Этот тип связи выражается в виде формульной зависимости. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Так, величина заработной платы при повременной оплате труда зависит от количества отработанных часов;
  • корреляционные - между изменением двух признаков нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем, при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака.

Изучая взаимосвязи между признаками, их классифицируют по направлению, форме, числу факторов:

  • по направлению связи делятся на прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора. При обратной связи направление изменения результативного признака противоположно направлению изменения признака- фактора. Например, чем выше квалификация рабочего, тем выше уровень производительности его труда (прямая связь). Чем выше производительность труда, тем ниже себестоимость единицы продукции (обратная связь);
  • по форме (виду функции) связи делят на линейные (прямолинейные) и нелинейные (криволинейные). Линейная связь отображается прямой линией, нелинейная - кривой (парабол ой, гиперболой и т.п.). При линейной связи с возрастанием значения факторного признака происходит равномерное возрастание (убывание) значения результативного признака;
  • по количеству факторов, действующих на результативный признак, связи подразделяют на однофакторные (парные) и многофакторные.

Изучение зависимости вариации признака от окружающих условий и составляет содержание теории корреляции .

При проведении корреляционного анализа вся совокупность данных рассматривается как множество переменных (факторов), каждая из которых содержит п наблюдений.

При изучении взаимосвязи между двумя факторами их, как правило, обозначают Х= (х р х 2 , ...,х п) и Y= (у { , у 2 , ...,у и).

Ковариация - это статистическая мера взаимодействия двух переменных. Например, положительное значение ковариации доходности двух ценных бумаг показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону.

Ковариация между двумя переменными X и Y рассчитывается следующим образом:

где- фактические значения переменных

X и г;

Если случайные величины Хи Y независимы, теоретическая ковариация равна нулю.

Ковариация зависит от единиц, в которых измеряются переменные Хи У, она является ненормированной величиной. Поэтому для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции.

Для двух переменных X и Y коэффициент парной корреляции

определяется следующим образом:

где SSy - оценки дисперсий величин Хи Y. Эти оценки характеризуют степень разброса значений х { ,х 2 , ...,х п (у 1 ,у 2 ,у п) вокруг своего среднего х (у соответственно), или вариабельность (изменчивость) этих переменных на множестве наблюдений.

Дисперсия (оценка дисперсии) определяется по формуле

В общем случае для получения несмещенной оценки дисперсии сумму квадратов следует делить на число степеней свободы оценки (п-р), где п - объем выборки, р - число наложенных на выборку связей. Так как выборка уже использовалась один раз для определения среднего X, то число наложенных связей в данном случае равно единице (р = 1), а число степеней свободы оценки (т.е. число независимых элементов выборки) равно (п - 1).

Более естественно измерять степень разброса значений переменных в тех же единицах, в которых измеряется и сама переменная. Эту задачу решает показатель, называемый среднеквадратическим отклонением (стандартным отклонением ) или стандартной ошибкой переменной X (переменной Y) и определяемый соотношением

Слагаемые в числителе формулы (3.2.1) выражают взаимодействие двух переменных и определяют знак корреляции (положительная или отрицательная). Если, например, между переменными существует сильная положительная взаимосвязь (увеличение одной переменной при увеличении второй), каждое слагаемое будет положительным числом. Аналогично, если между переменными существует сильная отрицательная взаимосвязь, все слагаемые в числителе будут отрицательными числами, что в результате дает отрицательное значение корреляции.

Знаменатель выражения для коэффициента парной корреляции [см. формулу (3.2.2)] просто нормирует числитель таким образом, что коэффициент корреляции оказывается легко интерпретируемым числом, не имеющим размерности, и принимает значения от -1 до +1.

Числитель выражения для коэффициента корреляции, который трудно интерпретировать из-за необычных единиц измерения, есть ковариация ХиУ. Несмотря на то что иногда она используется как самостоятельная характеристика (например, в теории финансов для описания совместного изменения курсов акций на двух биржах), удобнее пользоваться коэффициентом корреляции. Корреляция и ковариация представляют, по сути, одну и ту же информацию, однако корреляция представляет эту информацию в более удобной форме.

Для качественной оценки коэффициента корреляции применяются различные шкалы, наиболее часто - шкала Чеддока. В зависимости от значения коэффициента корреляции связь может иметь одну из оценок:

  • 0,1-0,3 - слабая;
  • 0,3-0,5 - заметная;
  • 0,5-0,7 - умеренная;
  • 0,7-0,9 - высокая;
  • 0,9-1,0 - весьма высокая.

Оценка степени тесноты связи с помощью коэффициента корреляции проводится, как правило, на основе более или менее ограниченной информации об изучаемом явлении. В связи с этим возникает необходимость оценки существенности линейного коэффициента корреляции, дающая возможность распространить выводы по результатам выборки на генеральную совокупность.

Оценка значимости коэффициента корреляции при малых объемах выборки выполняется с использованием 7-критерия Стьюдента. При этом фактическое (наблюдаемое) значение этого критерия определяется по формуле

Вычисленное по этой формуле значение / набл сравнивается с критическим значением 7-критерия, которое берется из таблицы значений /-критерия Стьюдента (см. Приложение 2) с учетом заданного уровня значимости ос и числа степеней свободы (п - 2).

Если 7 набл > 7 табл, то полученное значение коэффициента корреляции признается значимым (т.е. нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается). И таким образом делается вывод, что между исследуемыми переменными есть тесная статистическая взаимосвязь.

Если значение г у х близко к нулю, связь между переменными слабая. Если корреляция между случайными величинами:

  • положительная, то при возрастании одной случайной величины другая имеет тенденцию в среднем возрастать;
  • отрицательная, то при возрастании одной случайной величины другая имеет тенденцию в среднем убывать. Удобным графическим средством анализа парных данных является диаграмма рассеяния , которая представляет каждое наблюдение в пространстве двух измерений, соответствующих двум факторам. Диаграмму рассеяния, на которой изображается совокупность значений двух признаков, называют еще корреляционным полем. Каждая точка этой диаграммы имеет координаты х (. и у г По мере того как возрастает сила линейной связи, точки на графике будут лежать более близко к прямой линии, а величина г будет ближе к единице.

Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества признаков получают матрицу коэффициентов парной корреляции.

Пусть вся совокупность данных состоит из переменной Y = = (у р у 2 , ..., у п) и т переменных (факторов) X, каждая из которых содержит п наблюдений. Значения переменных Y и X, содержащиеся в наблюдаемой совокупности, записываются в таблицу (табл. 3.2.1).

Таблица 3.2.1

Переменная

Номер

наблюдения

Х тЗ

Х тп

На основании данных, содержащихся в этой таблице, вычисляют матрицу коэффициентов парной корреляции R, она симметрична относительно главной диагонали:


Анализ матрицы коэффициентов парной корреляции используют при построении моделей множественной регрессии.

Одной корреляционной матрицей нельзя полностью описать зависимости между величинами. В связи с этим в многомерном корреляционном анализе рассматривается две задачи:

  • 1. Определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ.
  • 2. Определение тесноты связи между двумя величинами при фиксировании или исключении влияния остальных величин.

Эти задачи решаются соответственно с помощью коэффициентов множественной и частной корреляции.

Решение первой задачи (определение тесноты связи одной случайной величины с совокупностью остальных величин, включенных в анализ) осуществляется с помощью выборочного коэффициента множественной корреляции по формуле

где R - R [см. формулу (3.2.6)]; Rjj - алгебраическое дополнение элемента той же матрицы R.

Квадрат коэффициента множественной корреляции Щ j 2 j _j J+l m принято называть выборочным множественным коэффициентом детерминации ; он показывает, какую долю вариации (случайного разброса) исследуемой величины Xj объясняет вариация остальных случайных величин Х { , Х 2 ,..., Х т.

Коэффициенты множественной корреляции и детерминации являются величинами положительными, принимающими значения в интервале от 0 до 1. При приближении коэффициента R 2 к единице можно сделать вывод о тесноте взаимосвязи случайных величин, но не о ее направлении. Коэффициент множественной корреляции может только увеличиваться, если в модель включать дополнительные переменные, и не увеличится, если исключать какие-либо из имеющихся признаков.

Проверка значимости коэффициента детерминации осуществляется путем сравнения расчетного значения /’-критерия Фишера

с табличным F raбл. Табличное значение критерия (см. Приложение 1) определяется заданным уровнем значимости а и степенями свободы v l = mnv 2 = n-m-l. Коэффициент R 2 значимо отличается от нуля, если выполняется неравенство

Если рассматриваемые случайные величины коррелируют друг с другом, то на величине коэффициента парной корреляции частично сказывается влияние других величин. В связи с этим возникает необходимость исследования частной корреляции между величинами при исключении влияния других случайных величин (одной или нескольких).

Выборочный частный коэффициент корреляции определяется по формуле

где R Jk , Rjj, R kk - алгебраические дополнения к соответствующим элементам матрицы R [см. формулу (3.2.6)].

Частный коэффициент корреляции, также как и парный коэффициент корреляции, изменяется от -1 до +1.

Выражение (3.2.9) при условии т = 3 будет иметь вид

Коэффициент г 12(3) называется коэффициентом корреляции между х { и х 2 при фиксированном х у Он симметричен относительно первичных индексов 1, 2. Его вторичный индекс 3 относится к фиксированной переменной.

Пример 3.2.1. Вычисление коэффициентов парной,

множественной и частной корреляции.

В табл. 3.2.2 представлена информация об объемах продаж и затратах на рекламу одной фирмы, а также индекс потребительских расходов за ряд текущих лет.

  • 1. Построить диаграмму рассеяния (корреляционное поле) для переменных «объем продаж» и «индекс потребительских расходов».
  • 2. Определить степень влияния индекса потребительских расходов на объем продаж (вычислить коэффициент парной корреляции).
  • 3. Оценить значимость вычисленного коэффициента парной корреляции.
  • 4. Построить матрицу коэффициентов парной корреляции по трем переменным.
  • 5. Найти оценку множественного коэффициента корреляции.
  • 6. Найти оценки коэффициентов частной корреляции.

1. В нашем примере диаграмма рассеяния имеет вид, приведенный на рис. 3.2.1. Вытянутость облака точек на диаграмме рассеяния вдоль наклонной прямой позволяет сделать предположение, что существует некоторая объективная тенденция прямой линейной связи между значениями переменных Х 2 Y (объем продаж).

Рис. 3.2.1.

2. Промежуточные расчеты при вычислении коэффициента корреляции между переменными Х 2 (индекс потребительских расходов) и Y (объем продаж) приведены в табл. 3.2.3.

Средние значения случайных величин Х 2 и Y, которые являются наиболее простыми показателями, характеризующими последовательности jCj, х 2 , ..., х 16 и y v y 2 , ..., у 16 , рассчитаем по следующим формулам:


Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Объем продаж Y, тыс. руб.

Индекс

потреби

тельских

расходов

Таблица 3.2.3

л:, - х

(И - У)(х, - х)

(х, - х) 2

(у,- - у) 2

Дисперсия характеризует степень разброса значений x v x 2 ,х :

Рассмотрим теперь решение примера 3.2.1 в Excel.

Чтобы вычислить корреляцию средствами Excel, можно воспользоваться функцией =коррел (), указав адреса двух столбцов чисел, как показано на рис. 3.2.2. Ответ помещен в D8 и равен 0,816.

Рис. 3.2.2.

(Примечание. Аргументы функции коррел должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент, который является массивом или ссылкой, содержит текст, логические значения или пустые ячейки, то такие значения игнорируются; однако ячейки, которые содержат нулевые значения, учитываются.

Если массив! и массив2 имеют различное количество точек данных, то функция коррел возвращает значение ошибки #н/д.

Если массив1 либо массив2 пуст или если о (стандартное отклонение) их значений равно нулю, то функция коррел возвращает значение ошибки #дел/0 !.)

Критическое значение /-статистики Стьюдента может быть также получено с помощью функции стьюдраспробр 1 пакета Excel. В качестве аргументов функции необходимо задать число степеней свободы, равное п - 2 (в нашем примере 16 - 2= 14) и уровень значимости а (в нашем примере а = 0,1) (рис. 3.2.3). Если фактическое значение /-статистики, взятое по модулю, больше критического, то с вероятностью (1 - а) коэффициент корреляции значимо отличается от нуля.


Рис. 3.2.3. Критическое значение /-статистики равно 1,7613

В Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения различных статистических задач. Для вычисления матрицы коэффициентов парной корреляции R следует воспользоваться инструментом Корреляция (рис. 3.2.4) и установить параметры анализа в соответствующем диалоговом окне. Ответ будет помещен на новый рабочий лист (рис. 3.2.5).

1 В Excel 2010 название функции стьюдраспробр изменено на стью-

ДЕНТ.ОБР.2Х.

Рис. 3.2.4.


Рис. 3.2.5.

  • Основоположниками теории корреляции считаются английские статистики Ф. Гальтон (1822-1911) и К. Пирсон (1857-1936). Термин «корреляция» был заимствован из естествознания и обозначает «соотношение, соответствие». Представление о корреляции как взаимозависимости между случайными переменными величинами лежит воснове математико-статистической теории корреляции.

1. ПОСТРОИМ МАТРИЦУ КОЭФФИЦИЕНТОВ ПАРНОЙ КОРРЕЛЯЦИИ.

Для этого рассчитаем коэффициенты парной корреляции по формуле:

Необходимые расчеты представлены в таблице 9.

-

связь между выручкой предприятия Y и объемом капиталовложений Х 1 слабая и прямая;

-

связи между выручкой предприятия Y и основными производственными фондами Х 2 практически нет;

-

связь между объемом капиталовложений Х 1 и основными производственными фондами Х 2 тесная и прямая;

Таблица 9

Вспомогательная таблица для расчета коэффициентов парных корреляций

t Y X1 X2

(y-yср)*
(x1-x1ср)

(y-yср)*
(x2-x2ср)

(х1-х1ср)*
(x2-x2ср)

1998 3,0 1,1 0,4 0,0196 0,0484 0,0841 0,0308 0,0406 0,0638
1999 2,9 1,1 0,4 0,0576 0,0484 0,0841 0,0528 0,0696 0,0638
2000 3,0 1,2 0,7 0,0196 0,0144 1E-04 0,0168 -0,0014 -0,0012
2001 3,1 1,4 0,9 0,0016 0,0064 0,0441 -0,0032 -0,0084 0,0168
2002 3,2 1,4 0,9 0,0036 0,0064 0,0441 0,0048 0,0126 0,0168
2003 2,8 1,4 0,8 0,1156 0,0064 0,0121 -0,0272 -0,0374 0,0088
2004 2,9 1,3 0,8 0,0576 0,0004 0,0121 0,0048 -0,0264 -0,0022
2005 3,4 1,6 1,1 0,0676 0,0784 0,1681 0,0728 0,1066 0,1148
2006 3,5 1,3 0,4 0,1296 0,0004 0,0841 -0,0072 -0,1044 0,0058
2007 3,6 1,4 0,5 0,2116 0,0064 0,0361 0,0368 -0,0874 -0,0152
Σ 31,4 13,2 6,9 0,684 0,216 0,569 0,182 -0,036 0,272
Средн. 3,14 1,32 0,69

Также матрицу коэффициентов парных корреляций можно найти в среде Excel с помощью надстройки АНАЛИЗ ДАННЫХ, инструмента КОРРЕЛЯЦИЯ.

Матрица коэффициентов парной корреляции имеет вид:

Y X1 X2
Y 1
X1 0,4735 1
X2 -0,0577 0,7759 1

Матрица парных коэффициентов корреляции показывает, что результативный признак у (выручка) имеет слабую связь с объемом капиталовложений х 1 , а с Размером ОПФ связи практически нет. Связь между факторами в модели оценивается как тесная, что говорит о их линейной зависимости, мультиколлинеарности.

2. ПОСТРОИТЬ ЛИНЕЙНУЮ МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Параметры модели найдем с помощью МНК. Для этого составим систему нормальных уравнений.

Расчеты представлены в таблице 10.

Решим систему уравнений, используя метод Крамера:

Таблица 10

Вспомогательные вычисления для нахождения параметров линейной модели множественной регрессии

y
3,0 1,1 0,4 1,21 0,44 0,16 3,3 1,2
2,9 1,1 0,4 1,21 0,44 0,16 3,19 1,16
3,0 1,2 0,7 1,44 0,84 0,49 3,6 2,1
3,1 1,4 0,9 1,96 1,26 0,81 4,34 2,79
3,2 1,4 0,9 1,96 1,26 0,81 4,48 2,88
2,8 1,4 0,8 1,96 1,12 0,64 3,92 2,24
2,9 1,3 0,8 1,69 1,04 0,64 3,77 2,32
3,4 1,6 1,1 2,56 1,76 1,21 5,44 3,74
3,5 1,3 0,4 1,69 0,52 0,16 4,55 1,4
3,6 1,4 0,5 1,96 0,7 0,25 5,04 1,8
31,4 13,2 6,9 17,64 9,38 5,33 41,63 21,63

Линейная модель множественной регрессии имеет вид:

Если объем капиталовложений увеличить на 1 млн. руб., то выручка предприятия увеличиться в среднем на 2,317 млн. руб. при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1 млн. руб., то выручка предприятия уменьшиться в среднем на 1,171 млн. руб. при неизменном объеме капиталовложений.

3. РАССЧИТАЕМ:

коэффициент детерминации:

67,82% изменения выручки предприятия обусловлено изменением объема капиталовложений и основных производственных фондов, на 32,18% - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2 (количество факторов), числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 7,375 > F табл. = 4.74, то уравнение регрессии в целом можно считать статистически значимым.

Рассчитанные показатели можно найти в среде Excel с помощью надстройки АНАЛИЗА ДАННЫХ, инструмента РЕГРЕССИЯ.


Таблица 11

Вспомогательные вычисления для нахождения средней относительной ошибки аппроксимации

y А
3,0 1,1 0,4 2,97 0,03 0,010
2,9 1,1 0,4 2,97 -0,07 0,024
3,0 1,2 0,7 2,85 0,15 0,050
3,1 1,4 0,9 3,08 0,02 0,007
3,2 1,4 0,9 3,08 0,12 0,038
2,8 1,4 0,8 3,20 -0,40 0,142
2,9 1,3 0,8 2,96 -0,06 0,022
3,4 1,6 1,1 3,31 0,09 0,027
3,5 1,3 0,4 3,43 0,07 0,019
3,6 1,4 0,5 3,55 0,05 0,014
0,353

среднюю относительную ошибку аппроксимации

В среднем расчетные значения отличаются от фактических на 3,53 %. Ошибка небольшая, модель можно считать точной.

4. Построить степенную модель множественной регрессии

Для построения данной модели прологарифмируем обе части равенства

lg y = lg a + β 1 ∙ lg x 1 + β 2 ∙ lg x 2 .

Сделаем замену Y = lg y, A = lg a, X 1 = lg x 1 , X 2 = lg x 2 .

Тогда Y = A + β 1 ∙ X 1 + β 2 ∙ X 2 – линейная двухфакторная модель регрессии. Можно применить МНК.

Расчеты представлены в таблице 12.

Таблица 12

Вспомогательные вычисления для нахождения параметров степенной модели множественной регрессии

y lg y
3,0 1,1 0,4 0,041 -0,398 0,477 0,002 -0,016 0,020 0,158 -0,190
2,9 1,1 0,4 0,041 -0,398 0,462 0,002 -0,016 0,019 0,158 -0,184
3,0 1,2 0,7 0,079 -0,155 0,477 0,006 -0,012 0,038 0,024 -0,074
3,1 1,4 0,9 0,146 -0,046 0,491 0,021 -0,007 0,072 0,002 -0,022
3,2 1,4 0,9 0,146 -0,046 0,505 0,021 -0,007 0,074 0,002 -0,023
2,8 1,4 0,8 0,146 -0,097 0,447 0,021 -0,014 0,065 0,009 -0,043
2,9 1,3 0,8 0,114 -0,097 0,462 0,013 -0,011 0,053 0,009 -0,045
3,4 1,6 1,1 0,204 0,041 0,531 0,042 0,008 0,108 0,002 0,022
3,5 1,3 0,4 0,114 -0,398 0,544 0,013 -0,045 0,062 0,158 -0,217
3,6 1,4 0,5 0,146 -0,301 0,556 0,021 -0,044 0,081 0,091 -0,167
31,4 13,2 6,9 1,178 -1,894 4,955 0,163 -0,165 0,592 0,614 -0,943

Решаем систему уравнений применяя метод Крамера.

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y

(Y-Y расч.) 2

A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f. 1 = k = 2, числе степеней свободы d.f. 2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как F расч. = 8,592 > F табл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

Посадка невозможна, в каком из реализуемых случаев расход топлива меньше. Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива. 6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда и управление...

К составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения. Можно выделить следующие основные этапы операционного исследования: наблюдение явления и сбор исходных данных; постановка задачи; построение математической модели; расчет модели; тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют...

Математических построений по аналогии с выявляет в плоском приближении продольно-скалярную электромагнитную волну с электрической - (28) и магнитной (29) синфазными составляющими. Математическая модель безвихревой электродинамики характеризуется скалярно-векторной структурой своих уравнений. Основополагающие уравнения безвихревой электродинамики сведены в таблице 1. Таблица 1 , ...

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Мозамбик

……………………………………………………………………………………..

Швейцария

Принятые в таблице обозначения:

· Y -- средняя ожидаемая продолжительность жизни при рождении, лет;

· X 1 -- ВВП в паритетах покупательной способности;

· X 2 -- цепные темпы прироста населения, %;

· X 3 -- цепные темпы прироста рабочей силы, %;

· Х 4 -- коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 -- 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .

6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1. С помощью надстройки «Анализ данных… Корреляция» строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис» «Анализ данных…» «Корреляция»). На рис. 1 изображена панель корреляционного анализа с заполненными полямиДля копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen (на некоторых клавиатурах -- Alt+PrtSc).. Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1.

рис. 1. Панель корреляционного анализа

Таблица 1

Матрица парных коэффициентов корреляции

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2 -Х 3 (выделен жирным шрифтом). Факторы Х 2 -Х 3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х2-Х3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х2 имеет больший по модулю коэффициент корреляции с результатом Y, чем фактор Х3: ry,x2=0,72516; ry,x3=0,53397; |ry,x2|>|ry,x3| (см. табл. 1). Это свидетельствует о более сильном влиянии фактора Х2 на изменение Y. Фактор Х3, таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y , X 1 , X 2 , X 4) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» «Анализ данных… » «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» в табл. 2 ):

y = 75.44 + 0.0447 ? x 1 - 0.0453 ? x 2 - 0.24 ? x 4

Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571?10 -45 (см. «Значимость F» в табл. 2 ), что существенно ниже принятого уровня значимости =0,05.

Вероятность случайного формирования коэффициентов при факторе Х 1 ниже принятого уровня значимости =0,05 (см. «P-Значение» в табл. 2 ), что свидетельствует о статистической значимости коэффициентов и существенном влиянии этих факторов на изменение годовой прибыли Y .

Вероятность случайного формирования коэффициентов при факторах Х 2 и Х 4 превышает принятый уровень значимости =0,05 (см. «P-Значение» в табл. 2 ), и эти коэффициенты не признаются статистически значимыми.

рис. 2. Панель регрессионного анализа модели Y (X 1 ,X 2 ,X 4 )

Таблица 2

Y (X 1 , X 2 , X 4 )

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

3. По результатам проверки статистической значимости коэффициентов уравнения регрессии, проведенной в предыдущем пункте, строим новую регрессионную модель, содержащую только информативные факторы, к которым относятся:

· факторы, коэффициенты при которых статистически значимы;

· факторы, у коэффициентов которых t _статистика превышает по модулю единицу (другими словами, абсолютная величина коэффициента больше его стандартной ошибки).

К первой группе относится фактор Х 1 ко второй -- фактор X 4 . Фактор X 2 исключается из рассмотрения как неинформативный, и окончательно регрессионная модель будет содержать факторы X 1 , X 4 .

Для построения уравнения регрессии скопируем на чистый рабочий лист значения используемых переменных (прил. 5) и проведем регрессионный анализ (рис. 3 ). Его результаты приведены в прил. 6 и перенесены в табл. 3 . Уравнение регрессии имеет вид:

y = 75.38278 + 0.044918 ? x 1 - 0.24031 ? x 4

(см. «Коэффициенты» в табл.3 ).

рис. 3. Панель регрессионного анализа модели Y (X 1 , X 4 )

Таблица 3

Результаты регрессионного анализа модели Y (X 1 , X 4 )

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Уравнение регрессии

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

Уравнение регрессии статистически значимо: вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «Значимость F» в табл.3 ).

Статистически значимым признается и коэффициент при факторе Х 1 вероятность его случайного формирования ниже допустимого уровня значимости =0,05 (см. «P-Значение» в табл. 3 ). Это свидетельствует о существенном влиянии ВВП в паритетах покупательной способности X 1 на изменение годовой прибыли Y .

Коэффициент при факторе Х 4 (годовой коэффициент младенческой смертности) не является статистически значимым. Однако этот фактор все же можно считать информативным, так как t _статистика его коэффициента превышает по модулю единицу, хотя к дальнейшим выводам относительно фактора Х 4 следует относиться с некоторой долей осторожности.

4. Оценим качество и точность последнего уравнения регрессии, используя некоторые статистические характеристики, полученные в ходе регрессионного анализа (см. «Регрессионную статистику» в табл. 3):

· множественный коэффициент детерминации

R 2 = _ i=1 ____________ =0.946576

R 2 = показывает, что регрессионная модель объясняет 94,7 % вариации средней ожидаемой продолжительности жизни при рождении Y , причем эта вариация обусловлена изменением включенных в модель регрессии факторов X 1 , X 4 ;

· стандартная ошибка регрессии

показывает, что предсказанные уравнением регрессии значения средней ожидаемой продолжительности жизни при рождении Y отличаются от фактических значений в среднем на 2,252208 лет.

Средняя относительная ошибка аппроксимации определяется по приближенной формуле:

E отн?0,8 ? -- ? 100%=0.8 ? 2.252208/66.9 ? 100%?2.7

где тыс. руб. -- среднее значение продолжительности жизни (определено с помощью встроенной функции «СРЗНАЧ »; прил. 1 ).

Е отн показывает, что предсказанные уравнением регрессии значения годовой прибыли Y отличаются от фактических значений в среднем на 2,7 %. Модель имеет высокую точность (при -- точность модели высокая, при -- хорошая, при -- удовлетворительная, при -- неудовлетворительная).

5. Для экономической интерпретации коэффициентов уравнения регрессии сведем в таблицу средние значения и стандартные отклонения переменных в исходных данных (табл. 4). Средние значения были определены с помощью встроенной функции «СРЗНАЧ», стандартные отклонения -- с помощью встроенной функции «СТАНДОТКЛОН» (см. прил. 1).

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х ; оценить статистическую значимость коэффициентов корреляции r (Y , X i); выбрать наиболее информативный фактор.

2. Построить модель парной регрессии с наиболее информативным фактором; дать экономическую интерпретацию коэффициента регрессии.

3. Оценить качество модели с помощью средней относительной ошибки аппроксимации, коэффициента детерминации и F – критерия Фишера (принять уровень значимости α=0,05).

4. С доверительной вероятностью γ=80% осуществить прогнозирование среднего значения показателя Y (прогнозные значения факторов приведены в Приложении 6). Представить графически фактические и модельные значения Y , результаты прогнозирования.

5. Методом включения построить двухфакторные модели, сохраняя в них наиболее информативный фактор; построить трехфакторную модель с полным перечнем факторов.

6. Выбрать лучшую из построенных множественных моделей. Дать экономическую интерпретацию ее коэффициентов.

7. Проверить значимость коэффициентов множественной регрессии с помощью t –критерия Стьюдента (принять уровень значимости α=0,05). Улучшилось ли качество множественной модели по сравнению с парной?

8. Дать оценку влияния факторов на результат с помощью коэффициентов эластичности, бета– и дельта– коэффициентов.

Задача 2. Моделирование одномерного временного ряда

В Приложении 7 приведены временные ряды Y(t) социально-экономических показателей по Алтайскому краю за период с 2000 г. по 2011 г. Требуется исследовать динамику показателя, соответствующего варианту задания.

Вариант Обозначение, наименование, единица измерения показателя
Y1 Потребительские расходы в среднем на душу населения (в месяц), руб.
Y2 Выбросы загрязняющих веществ в атмосферный воздух, тыс. тонн
Y3 Средние цены на вторичном рынке жилья (на конец года, за квадратный метр общей площади), руб
Y4 Объем платных услуг на душу населения, руб
Y5 Среднегодовая численность занятых в экономике, тыс. человек
Y6 Число собственных легковых автомобилей на 1000 человек населения (на конец года), штук
Y7 Среднедушевые денежные доходы (в месяц), руб
Y8 Индекс потребительских цен (декабрь к декабрю предыдущего года), %
Y9 Инвестиции в основной капитал (в фактически действовавших ценах), млн. руб
Y10 Оборот розничной торговли на душу населения (в фактически действовавших ценах), руб


Порядок выполнения работы

1. Построить линейную модель временного ряда , параметры которой оценить МНК. Пояснить смысл коэффициента регрессии.

2. Оценить адекватность построенной модели, используя свойства случайности, независимости и соответствия остаточной компоненты нормальному закону распределения.

3. Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

4. Осуществить прогнозирование рассматриваемого показателя на год вперед (прогнозный интервал рассчитать при доверительной вероятности 70%).

5. Представить графически фактические значения показателя, результаты моделирования и прогнозирования.

6. Провести расчет параметров логарифмического, полиномиального (полином 2-й степени), степенного, экспоненциального и гиперболического трендов. На основании графического изображения и значения индекса детерминации выбрать наиболее подходящий вид тренда.

7. С помощью лучшей нелинейной модели осуществить точечное прогнозирование рассматриваемого показателя на год вперед. Сопоставить полученный результат с доверительным прогнозным интервалом, построенным при использовании линейной модели.

ПРИМЕР

Выполнения контрольной работы

Задача 1

Фирма занимается реализацией подержанных автомобилей. Наименования показателей и исходные данные для эконометрического моделирования представлены в таблице:

Цена реализации, тыс.у.е. (Y ) Цена нового авт., тыс.у.е. (Х1 ) Срок эксплуатации, годы (Х2 ) Левый руль - 1, правый руль - 0, (Х3 )
8,33 13,99 3,8
10,40 19,05 2,4
10,60 17,36 4,5
16,58 25,00 3,5
20,94 25,45 3,0
19,13 31,81 3,5
13,88 22,53 3,0
8,80 16,24 5,0
13,89 16,54 2,0
11,03 19,04 4,5
14,88 22,61 4,6
20,43 27,56 4,0
14,80 22,51 3,3
26,05 31,75 2,3

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х; оценить статистическую значимость коэффициентов корреляции r(Y, X i); выбрать наиболее информативный фактор.

Используем Excel (Данные / Анализ данных / КОРРЕЛЯЦИЯ):

Получим матрицу коэффициентов парной корреляции между всеми имеющимися переменными:

У Х1 Х2 Х3
У
Х1 0,910987
Х2 -0,4156 -0,2603
Х3 0,190785 0,221927 -0,30308

Проанализируем коэффициенты корреляции между результирующим признаком Y и каждым из факторов X j:

> 0, следовательно, между переменными Y и Х 1 наблюдается прямая корреляционная зависимость: чем выше цена нового автомобиля, тем выше цена реализации.

> 0,7 – эта зависимость является тесной.

< 0, значит, между переменными Y и Х 2 наблюдается

обратная корреляционная зависимость: цена реализации ниже для авто-

мобилей с большим сроком эксплуатации.

– эта зависимость умеренная, ближе к слабой.

> 0, значит, между переменными Y и Х 3 наблюдается прямая корреляционная зависимость: цена реализации выше для автомобилей с левым рулем.

< 0,4 – эта зависимость слабая.

Для проверки значимости найденных коэффициентов корреляции используем критерий Стьюдента.

Для каждого коэффициента корреляции вычислим t -статистику по формуле и занесем результаты расчетов в дополнительный столбец корреляционной таблицы:

У Х1 Х2 Х3 t-статистики
У
Х1 0,910987 7,651524603
Х2 -0,4156 -0,2603 1,582847988
Х3 0,190785 0,221927 -0,30308 0,673265587

По таблице критических точек распределения Стъюдента при уровне значимости и числе степеней свободы определим критическое значение (Приложение 1, или функция СТЬЮДРАСПОБР).Y и сроком эксплуатации Х 2 достоверна.

< , следовательно, коэффициент не является значимым. На основании выборочных данных нет оснований утверждать, что зависимость между ценой реализации Y и расположением руля Х 3 достоверна.

Таким образом, наиболее тесная и значимая зависимость наблюдается между ценой реализации Y и ценой нового автомобиля Х 1 ; фактор Х 1 является наиболее информативным.

Коллинеарными являются факторы …

И коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и … мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются x (2) и x (3)

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

4. При анализе промышленных предприятий в трех регионах (Республика Марий Эл, Республика Чувашия, Республика Татарстан) были построены три частных уравнения регрессии:

для Республики Марий Эл;

для Республики Чувашия;

для Республики Татарстан.

Укажите вид фиктивных переменных и уравнение с фиктивными переменными, обобщающее три частных уравнения регрессии.

5. В эконометрике фиктивной переменной принято считать …

переменную, принимающую значения 0 и 1

описывающую количественным образом качественный признак

1. Для регрессионной модели зависимости среднедушевого денежного дохода населения (руб., у ) от объема валового регионального продукта (тыс. р., х 1 ) и уровня безработицы в субъекте (%, х 2 ) получено уравнение . Величина коэффициента регрессии при переменной х 2 свидетельствует о том, что при изменении уровня безработицы на 1% среднедушевой денежный доход ______ рубля при неизменной величине валового регионального продукта.

изменится на (-1,67)

2. В уравнении линейной множественной регрессии: , где – стоимость основных фондов (тыс. руб.); – численность занятых (тыс. чел.); y – объем промышленного производства (тыс. руб.) параметр при переменной х 1 , равный 10,8, означает, что при увеличении объема основных фондов на _____ объем промышленного производства _____ при постоянной численности занятых.


на 1 тыс. руб. … увеличится на 10,8 тыс. руб.

3. Известно, что доля остаточной дисперсии зависимой переменной в ее общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,8

4. Построена эконометрическая модель для зависимости прибыли от реализации единицы продукции (руб., у ) от величины оборотных средств предприятия (тыс. р., х 1 ): . Следовательно, средний размер прибыли от реализации, не зависящий от объема оборотных средств предприятия, составляет _____ рубля. 10,75

5. F-статистика рассчитывается как отношение ______ дисперсии к ________ дисперсии, рассчитанных на одну степень свободы. факторной … остаточной

1. Для эконометрической модели уравнения регрессии ошибка модели определяется как ______ между фактическим значением зависимой переменной и ее расчетным значением. Разность

2. Величина называется … случайной составляющей

3. В эконометрической модели уравнения регрессии величина отклонения фактического значения зависимой переменной от ее расчетного значения характеризует … ошибку модели

4. Известно, что доля объясненной дисперсии в общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,2

5. При методе наименьших квадратов параметры уравнения парной линейной регрессии определяются из условия ______ остатков . минимизации суммы квадратов

1. Для обнаружения автокорреляции в остатках используется …

статистика Дарбина – Уотсона

2. Известно, что коэффициент автокорреляции остатков первого порядка равен –0,3. Также даны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , . По данным характеристикам можно сделать вывод о том, что …автокорреляция остатков отсутствует

© 2024. errands.ru. Как заработать, сохранить и приумножить.