Автокорреляция, коэффициент автокорреляции. Значение коэффициента автокорреляции первого порядка характеризует

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущего. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(5.2)

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом (). С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции .

1. Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой .

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Проверка показателя и факторов на автокорреляцию установила, что все включенные в анализ переменные имели высокий (надежный) коэффициент автокорреляции (+ г > г табл = 0,299, - г > г табл = 0,399 при а = 5 % и /V= 20) . Однако известно, что фактор времени, введенный в модель, снимает автокорреляцию (основанием к такому утверждению являются теоремы Фриша и Роу ), поэтому для получения динамических моделей нами использовались и простейшие формы связи типа (23), (24).  


Распространены следующие способы вычисления коэффициента автокорреляции.  

Если полученное по одной из этих формул значение коэффициента автокорреляции окажется меньше табличного, то это свидетельствует об отсутствии во временном ряде существенной автокорреляции.  

Рекомендуется исчислять ряд коэффициентов автокорреляции в зависимости от временного лага (напомним, что коэффициент автокорреляции исчисляется между двумя векторами данных, один из которых - исходный динамический ряд, а другой - такой же, но сдвинутый на 1,2, 3 и т.д. моментов наблюдения). Формула коэффициента автокорреляции  

Рассмотрим коэффициенты автокорреляции валютного курса рубля к доллару США  

Приведем рассчитанные нами значения коэффициента автокорреляции для упомянутых факторов (лаг = 1-3 мес.) ВВП 0,86 -0,52  

Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени на 1 период (год), на 2, на 3 и т. д., поэтому говорят о коэффициентах автокорреляции разных порядков первого, второго и т. д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.  

Автокорреляцию измеряют при помощи нециклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (I). Этот сдвиг, именуемый временным лагом, определяет и порядок коэффициентов автокорреляции. Различают коэффициенты автокорреляции первого порядка (при L- 1), второго порядка (при L = 2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента первого порядка, так как наиболее  

Тогда формулу коэффициента автокорреляции можно записать следующим образом  

Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.  

Следовательно, прежде чем коррелировать ряды динамики (по уровням), необходимо проверить каждый ряд на наличие или отсутствие в них автокорреляции (при помощи коэффициента автокорреляции, описанного в предыдущем параграфе). В случае наличия автокорреляции между уровнями ряда она должна быть устранена. Рассмотрим способы ее исключения в рядах динамики.  

Так как коэффициент р(т) измеряет корреляцию между членами одного и того же ряда, его называют коэффициентом автокорреляции, а зависимость р(т) - автокорреляционной функцией . В силу стационарности временного ряда у, (t= 1,2,..., ri) автокорреляционная функция р(т) зависит только от лага т, причем  

Пример 6.1. По данным табл. 6.1 для временного ряда у, найти среднее значение , среднее квадратическое отклонение , коэффициенты автокорреляции (для лагов т=1 2) и частный коэффициент автокорреляции 1-го порядка.  

Найдем коэффициент автокорреляции г(т) временного ряда (для лага т = 1), т. е. коэффициент корреляции между последовательностями семи пар наблюдений yt и у/ч-i (t= 1,2,...,7)  

Л =213 171+171 291+... +351 361=642 583.

Коэффициент автокорреляции г(2) для лага т = 2 между членами ряда yt и yt+2 (1,2 -. 6) по шести парам наблюдений вычисляем аналогично г(2)=0,842.  

Эту величину называют еще коэффициентом автокорреляции первого порядка. Так как согласно допущениям МНК математическое ожидание ошибки равно нулю, то формулу можно упростить  

Мы можем считать, что автокорреляция отсутствует, если выборочный коэффициент автокорреляции незначимо отличается от нуля, то есть в данном случае мы должны проверить гипотезу  

На практике проверяется не независимость, а некоррелированность ошибок, которая является необходимым, но недостаточным условием независимости. Для этого нужно рассчитать коэффициент автокорреляции первого порядка  

Для рассматриваемого здесь случая эта величина равна Pk k+i = 0.987. Очевидно, что коэффициент автокорреляции  

Формулы для расчета коэффициентов автокорреляции старших порядков легко получить из формулы линейного коэффициента корреляции.  

Коэффициент автокорреляции остатков первого порядка определяется по формуле  

Фактическое значение d сравниваем с табличными значениями при 5%-ном уровне значимости. При п = 18 месяцев и т = 2 (число факторов) нижнее значение d равно 1,05, а верхнее - 1,53. Так как фактическое значение d близко к 4, можно считать, что автокорреляция в остатках характеризуется отрицательной величиной. Чтобы проверить значимость отрицательного коэффициента автокорреляции, найдем величину  

По данным за 30 месяцев некоторого временного ряда хг были получены значения коэффициентов автокорреляции уровней П = 0,63 г2 = 0,38 гг = 0,72 г4 = 0,97 г5 = О,55 г6 = 0,40 г7 = 0,65 г - коэффициенты автокорреляции t-го порядка.  

Так как значения всех коэффициентов автокорреляции достаточно высокие, ряд содержит тенденцию. Поскольку наибольшее абсолютное значение имеет коэффициент автокорреляции 4-го порядка г4, ряд содержит периодические колебания, цикл этих колебаний равен 4.  

Определите коэффициенты автокорреляции уровней этого ряда первого и второго порядка.  

Оцените качество каждого тренда через среднюю ошибку аппроксимации , линейный коэффициент автокорреляции отклонений.  

Для определения типа колебаний применяются графическое изображение, метод поворотных точек М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены далее.  

Теперь обратимся к рис. 9.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами, и коэффициент автокорреляции первого порядка будет близок к -1. При долгопериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее цикл, тем больше перевес положительных произведений в числителе, и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных , ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распределенных во времени колебаний, так и циклических. Коэффициенты автокорреляции следующих порядков II = - 0,577 III = -0,611 IV = -0,095 V = +0,376 VI = +0,404 VII = +0,044. Следовательно, противофаза цикла ближе всего к 3 годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к 6 годам, что и дает длину цикла колебаний. Эти максимальные по абсолютной величине коэффициенты не близки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.  

Для суждения о наличии или отсутствии автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5%-ного или 1%-ного уровня значимости (вероятности допустить ошибку при принятии нулевой гипотезы

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда , а график зависимости ее значений от величины лага (порядка коэффициента автокорреляции) - коррело-граммой.  

Критерий Дарбина - Уотсона и коэффициент автокорреляции остатков первого порядка связаны соотношением  

Для выявления структуры ряда (т. е. состава компонент) строят автокорреляционную функцию.

Автокорреляция уровней ряда – корреляционная между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L – лаг). То есть связь между рядом: Х 1 , Х 2 , ... Х n-L и рядом Х 1+L , Х 2+L , ... Х n , где L – положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L = 1, то имеем коэффициент автокорреляции 1-го порядка r t,t-1 . Если L = 2, то коэффициент автокорреляции 2-го порядка r t,t-2 и т.д.

Следует учитывать, что с увеличением лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции, равный n/4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (I), при котором автокорреляция (r t,t-L) наиболее высокая, выявив тем самым структуру временного ряда .

Если наиболее высоким оказывается значение r t,t-1 , то исследуемый ряд додержит только тенденцию. Если наиболее высоким оказался r t,t-L , то ряд содержит (помимо тенденции) колебания периодом L.

Если ни один из r t,t-L (l=1;L) не является значимым, можно сделать одно из двух предположений:

Либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

Либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда . График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Чтобы найти коэффициент корреляции 1-го порядка, нужно найти корреляцию между рядами (расчет производится не по 14, а по 13 парам наблюдений):

Два важных свойства коэффициента автокорреляции:



1) Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По-этому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2) По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Сдвигаем исходный ряд на 1 уровней. Получаем следующую таблицу:

y t y t - 1
3.18 4.31
4.31 5.66
5.66 6.89
6.89 9.47
9.47 12.34
12.34 14.36
14.36 18.08
18.08 20.63
20.63 24.3
24.3 30.2
30.2 37.04
37.04 43.81
43.81 48.32

Расчет коэффициента автокорреляции 1-го порядка .

Выборочные средние.

Выборочные дисперсии:

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-1:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < r t,t-1 < 0.3: слабая;

0.3 < r t,t-1 < 0.5: умеренная;

0.5 < r t,t-1 < 0.7: заметная;

0.7 < r t,t-1 < 0.9: высокая;

0.9 < r t,t-1 < 1: весьма высокая;

В нашем примере связь между рядами - весьма высокая и прямая.


x y x 2 y 2 x y
3.18 4.31 10.11 18.58 13.71
4.31 5.66 18.58 32.04 24.39
5.66 6.89 32.04 47.47
6.89 9.47 47.47 89.68 65.25
9.47 12.34 89.68 152.28 116.86
12.34 14.36 152.28 206.21 177.2
14.36 18.08 206.21 326.89 259.63
18.08 20.63 326.89 425.6 372.99
20.63 24.3 425.6 590.49 501.31
24.3 30.2 590.49 912.04 733.86
30.2 37.04 912.04 1371.96 1118.61
37.04 43.81 1371.96 1919.32 1622.72
43.81 48.32 1919.32 2334.82 2116.9
230.27 275.41 6102.65 8427.36 7162.43

Сдвигаем исходный ряд на 2 уровней. Получаем следующую таблицу:

y t y t - 2
3.18 5.66
4.31 6.89
5.66 9.47
6.89 12.34
9.47 14.36
12.34 18.08
14.36 20.63
18.08 24.3
20.63 30.2
24.3 37.04
30.2 43.81
37.04 48.32

Расчет коэффициента автокорреляции 2-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-2:

x y x 2 y 2 x y
3.18 5.66 10.11 32.04
4.31 6.89 18.58 47.47 29.7
5.66 9.47 32.04 89.68 53.6
6.89 12.34 47.47 152.28 85.02
9.47 14.36 89.68 206.21 135.99
12.34 18.08 152.28 326.89 223.11
14.36 20.63 206.21 425.6 296.25
18.08 24.3 326.89 590.49 439.34
20.63 30.2 425.6 912.04 623.03
24.3 37.04 590.49 1371.96 900.07
30.2 43.81 912.04 1919.32 1323.06
37.04 48.32 1371.96 2334.82 1789.77
186.46 271.1 4183.34 8408.79 5916.94

Сдвигаем исходный ряд на 3 уровней. Получаем следующую таблицу:

y t y t - 3
3.18 6.89
4.31 9.47
5.66 12.34
6.89 14.36
9.47 18.08
12.34 20.63
14.36 24.3
18.08 30.2
20.63 37.04
24.3 43.81
30.2 48.32

Расчет коэффициента автокорреляции 3-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-3:

x y x 2 y 2 x y
3.18 6.89 10.11 47.47 21.91
4.31 9.47 18.58 89.68 40.82
5.66 12.34 32.04 152.28 69.84
6.89 14.36 47.47 206.21 98.94
9.47 18.08 89.68 326.89 171.22
12.34 20.63 152.28 425.6 254.57
14.36 24.3 206.21 590.49 348.95
18.08 30.2 326.89 912.04 546.02
20.63 37.04 425.6 1371.96 764.14
24.3 43.81 590.49 1919.32 1064.58
30.2 48.32 912.04 2334.82 1459.26
149.42 265.44 2811.38 8376.75 4840.25

Сдвигаем исходный ряд на 4 уровней. Получаем следующую таблицу:

y t y t - 4
3.18 9.47
4.31 12.34
5.66 14.36
6.89 18.08
9.47 20.63
12.34 24.3
14.36 30.2
18.08 37.04
20.63 43.81
24.3 48.32

Расчет коэффициента автокорреляции 4-го порядка .

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции r t,t-4:

x y x 2 y 2 x y
3.18 9.47 10.11 89.68 30.11
4.31 12.34 18.58 152.28 53.19
5.66 14.36 32.04 206.21 81.28
6.89 18.08 47.47 326.89 124.57
9.47 20.63 89.68 425.6 195.37
12.34 24.3 152.28 590.49 299.86
14.36 30.2 206.21 912.04 433.67
18.08 37.04 326.89 1371.96 669.68
20.63 43.81 425.6 1919.32 903.8
24.3 48.32 590.49 2334.82 1174.18
119.22 258.55 1899.34 8329.28 3965.71

Вывод : в данном ряду динамики имеется тенденция (r t,t-1 = 0.997 → 1).

Решение было получено и оформлено с помощью сервиса:

Автокорреляция

Вместе с этой задачей решают также:

Тест Дарбина-Уотсона

Выявление тренда методом аналитического выравнивания

Уравнение нелинейной регрессии

Показатели динамики: цепные и базисные

Анализ сезонных колебаний

Аддитивная модель временного ряда

Мультипликативная модель временного ряда

Онлайн сдача дистанционных тестов

Copyright © Semestr.RU


Список литературы

1. Практикум по эконометрике: Учебн. пособие/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 344 с.

2. Эконометрика: Учебник/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 576 с.

3. Эконометрика: Учебно-методическое пособие/ Шалабанов А.К., Роганов Д.А. – Казань: ТИСБИ, 2004. – 198 с.

Краткая теория

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного рада. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Простейший подход - расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой , сезонной и случайной компонент. Общий вид мультипликативный модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой , сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выравненных данных в аддитивной или в мультипликативной модели.

4. Аналитическое выравнивание уровней или и расчет значений с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или .

6. Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Пример решения задачи

Условие задачи

Имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов.

Требуется:

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).

3. Сделать прогноз на 2 квартала вперед.

Чтобы решение задачи по эконометрике было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по эконометрике...

1 5.5 9 8.2 2 4.8 10 5.5 3 5.1 11 6.5 4 9.0 12 11.0 5 7.1 13 8.9 6 4.9 14 6.5 7 6.1 15 7.3 8 10.0 16 11.2

Решение задачи

1) Построим поле корреляции:

Уже исходя из графика видно, что значения образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу:

1 5.5 --- --- --- --- --- --- 2 4.8 5.5 -2.673 -1.593 4.260 7.147 2.539 3 5.1 4.8 -2.373 -2.293 5.443 5.633 5.259 4 9 5.1 1.527 -1.993 -3.043 2.331 3.973 5 7.1 9 -0.373 1.907 -0.712 0.139 3.635 6 4.9 7.1 -2.573 0.007 -0.017 6.622 0.000 7 6.1 4.9 -1.373 -2.193 3.012 1.886 4.811 8 10 6.1 2.527 -0.993 -2.510 6.384 0.987 9 8.2 10 0.727 2.907 2.112 0.528 8.449 10 5.5 8.2 -1.973 1.107 -2.184 3.894 1.225 11 6.5 5.5 -0.973 -1.593 1.551 0.947 2.539 12 11 6.5 3.527 -0.593 -2.092 12.437 0.352 13 8.9 11 1.427 3.907 5.574 2.035 15.262 14 6.5 8.9 -0.973 1.807 -1.758 0.947 3.264 15 7.3 6.5 -0.173 -0.593 0.103 0.030 0.352 16 11.2 7.3 3.727 0.207 0.770 13.888 0.043 Сумма 112.1 106.4 0 0 10.507 64.849 52.689 Среднее значение 7.473 7.093

Следует заметить. что среднее значение получается путем деления не на 16, а на 15, так как у нас теперь на одно наблюдение меньше.

Коэффициент автокорреляции первого порядка:

Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка:

1 5.5 --- --- --- --- --- --- 2 4.8 --- --- --- --- --- --- 3 5.1 5.5 -2.564 -1.579 4.048 6.576 2.492 4 9 4.8 1.336 -2.279 -3.044 1.784 5.192 5 7.1 5.1 -0.564 -1.979 1.116 0.318 3.915 6 4.9 9 -2.764 1.921 -5.311 7.641 3.692 7 6.1 7.1 -1.564 0.021 -0.034 2.447 0.000 8 10 4.9 2.336 -2.179 -5.089 5.456 4.746 9 8.2 6.1 0.536 -0.979 -0.524 0.287 0.958 10 5.5 10 -2.164 2.921 -6.323 4.684 8.535 11 6.5 8.2 -1.164 1.121 -1.306 1.356 1.258 12 11 5.5 3.336 -1.579 -5.266 11.127 2.492 13 8.9 6.5 1.236 -0.579 -0.715 1.527 0.335 14 6.5 11 -1.164 3.921 -4.566 1.356 15.378 15 7.3 8.9 -0.364 1.821 -0.664 0.133 3.318 16 11.2 6.5 3.536 -0.579 -2.046 12.501 0.335 Сумма 107.3 99.1 0 0 -29.721 57.192 52.644 Среднее значение 7.664 7.079

Следовательно:

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу:

Лаг Коэффициент автокорреляции уровней 1 0.180 2 -0.542 3 0.129 4 0.980 5 0.987 6 -0.686 7 0.019 8 0.958 9 0.117 10 -0.707 11 -0.086 12 0.937

Коррелограмма:

Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать выводы о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

2) Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии.

Разделив полученные суммы на 4, найдем скользящие средние. Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние.

Итого за четыре квартала Скользящая средняя за четыре квартала Центрированая скользящая средняя Оценка сезонной компоненты 1 5.5 -- -- -- -- 2 4.8 24.4 6.1 -- -- 3 5.1 26 6.5 6.300 -1.200 4 9 26.1 6.525 6.513 2.488 5 7.1 27.1 6.775 6.650 0.450 6 4.9 28.1 7.025 6.900 -2.000 7 6.1 29.2 7.3 7.163 -1.063 8 10 29.8 7.45 7.375 2.625 9 8.2 30.2 7.55 7.500 0.700 10 5.5 31.2 7.8 7.675 -2.175 11 6.5 31.9 7.975 7.888 -1.388 12 11 32.9 8.225 8.100 2.900 13 8.9 33.7 8.425 8.325 0.575 14 6.5 33.9 8.475 8.450 -1.950 15 7.3 --- --- --- --- 16 11.2 --- --- --- ---

Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими среднеми. Используем эти оценки для расчета значений сезонной компоненты . Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты :

Показатели Год № квартала, I II III IV 1 --- --- -1.2 2.488 2 0.45 -2 -1.063 2.625 3 0.7 -2.175 -1.388 2.9 4 0.575 -1.95 --- --- Всего за i-й квартал 1.725 -6.125 -3.651 8.013 Средняя оценка сезонной компоненты для -го квартала, 0.575 -2.042 -1.217 2.671 Скорректированная сезонная компонента, 0.578 -2.039 -1.213 2.674

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должны быть равна нулю.

Для данной модели имеем:

Корректирующий коэффициент:

Рассчитываем скорректированные значения сезонной компоненты и заносим полученные данные в таблицу.

Проверим равенство нулю суммы значений сезонной компоненты:

Исключим влияние сезонной компоненты, вычитая ее значения из кажждого уровня исходного временного ряда. Получим величины . Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

1 5.5 0.578 4.922 5.853 6.431 -0.931 0.867 3.423 2 4.8 -2.039 6.839 6.053 4.014 0.786 0.618 6.503 3 5.1 -1.213 6.313 6.253 5.040 0.060 0.004 5.063 4 9 2.674 6.326 6.453 9.127 -0.127 0.016 2.723 5 7.1 0.578 6.522 6.653 7.231 -0.131 0.017 0.063 6 4.9 -2.039 6.939 6.853 4.814 0.086 0.007 6.003 7 6.1 -1.213 7.313 7.053 5.840 0.260 0.068 1.563 8 10 2.674 7.326 7.253 9.927 0.073 0.005 7.023 9 8.2 0.578 7.622 7.453 8.031 0.169 0.029 0.722 10 5.5 -2.039 7.539 7.653 5.614 -0.114 0.013 3.423 11 6.5 -1.213 7.713 7.853 6.640 -0.140 0.020 0.723 12 11 2.674 8.326 8.053 10.727 0.273 0.075 13.323 13 8.9 0.578 8.322 8.253 8.831 0.069 0.005 2.403 14 6.5 -2.039 8.539 8.453 6.414 0.086 0.007 0.723 15 7.3 -1.213 8.513 8.653 7.440 -0.140 0.020 0.003 16 11.2 2.674 8.526 8.853 11.527 -0.327 0.107 14.823 Итого 1.876 68.500

Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда с помощью линейного тренда. Результаты аналитического выравнивания следующие:

Подставляя в это уравнение значения , найдем уровни для каждого момента времени

Найлем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов.

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок:

Следовательно, можно сказать, что аддитивная модель объясняет 99.3% общей вариации уровней временного ряда.

3) Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:

Значения сезонных компонент за соответствующие кварталы равны:

Таким образом:

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по эконометрике с контрольными или экзаменами.

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Линейная модель парной регрессии
Задача на расчет линейной модели парной регрессии. В ходе решения приведено вычисление коэффициентов регрессии, произведена оценка их значимости, а также вычислена средняя ошибка аппроксимации и показан расчет доверительного интервала прогноза.

Модель множественной линейной регрессии
Страница содержит последовательное и систематизирование решение задачи на тему корреляционного анализа. Рассмотрена линейная модель множественной регрессии - вычисление коэффициентов регрессии и коэффициентов стандартизированного уравнения регрессии. Приведен расчет парных, частных и множественного коэффициента корреляции, коэффициентов эластичности.