Митохондрии клетки строение и функции. Митохондрии – строение и функции

Митохондрии имеются во всех эукариотических клетках. Эти органеллы - главное место аэробной дыхательной активности клетки. Впервые митохондрии были обнаружены в виде гранул в мышечных клетках в 1850 г.

Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными: в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина - в пределах 0,25-1,00 мкм, но их диаметр не превышает 1 мкм.

Митохондрии способны изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение позволяет клетке сосредоточить большое число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых).

Строение митохондрий

Митохондрии выделяют из клеток в виде чистой фракции с помощью гомогенизатора и ультрацентрифуги, как описано в статье. После этого их можно исследовать в электронном микроскопе, используя для этого различные методики, например изготовление срезов или негативный контраст,...

Каждая митохондрия окружена оболочкой, состоящей из двух мембран. Наружную мембрану отделяет от внутренней небольшое расстояние - внутримембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки, так называемые кристы. Кристы существенно увеличивают поверхность внутренней мембраны, обеспечивая место для размещения компонентов дыхательной цепи. Через внутреннюю митохондри-альную мембрану осуществляется активный транспорт АДФ и АТФ. Метод негативного контрастирования, при котором окрашенными оказываются не сами структуры, а пространство вокруг них, позволил выяоить присутствие особых «элементарных частиц» на той стороне внутренней митохондриальной мембраны, которая обращена к матриксу. Каждая такая частица состоит из головки, ножки и основания.

Хотя микрофотографии свидетельствуют, казалось бы, о том, что элементарные частицы выступают из мембраны в матрикс, считается, что это артефакт, обусловленный самой процедурой приготовления препарата, и что в действительности они полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ; в них находится фермент АТФаза, обеспечивающий сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса, и протекает окисление жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и 70S-рибосомы.

Митохондрии растительной клетки. Их структура и функции

Форма − округлые или гантелевидные тельца.

Размеры − длина 1-5 мкм, диаметром 0,4-0,5 мкм.

Количество в клетке − от десятков до 5 000.

Структура . Состоят в основном из белка (60-65 %) и липидов (30 %). Это двухмембранные органоиды. Толщина наружной и внутренней мембран − 5-6 нм каждая. Перимитохондриальное пространство (промежуток между мемранами) заполнено жидкостью типа сыворотки. Внутренняя мембрана образует различной формы складки − кристы . На внутренней поверхности внутренней мембраны расположены грибовидные частицы − оксисомы, содержащие окислительные ферменты. Внутреннее содержимое митохондрий − матрикс . В матриксе содержатся рибосомы и митохондриальная ДНК (0,5 %), которая имеет кольцевое строение и отвечает за синтез белков митохондрий. Митохондрии имеют все типы РНК (1 %), делятся независимо от деления ядра, в клетке образуются от предсуществующих митохондрий путем деления или почкования. Полупериод жизни митохондрий − 5−10 дней.

Функции . Митохондрии являются центрами энергетической активности клеток. В митохондриях функционируют системы аэробного дыхания и окислительного фосфорелирования. Во внутренней мембране митохондрий локализованы компоненты электронтранспортной цепи и АТФ-синтетазные комплексы, осуществляющие транспорт электронов и протонов и синтез АТФ. В матриксе располагаются системы окисления ди- и трикарбоновых кислот, ряд систем синтеза липидов, аминокислот и др.

Митохондрии способны передвигаться к местам усиленного потребления энергии. Они могут ассоциировать друг с другом путем тесного сближения или при помощи тяжей. При анаэробном дыхании митохондрии исчезают.

Митохондрии имеют округлую и продолговатую форму диаметром 0,4–0,5 мкм и длиной 1–5 мкм (рис. 1.3).

Количество митохондрий варьирует от единиц до 1 500–2 000 на растительную клетку.

Митохондрии ограничены двумя мембранами: наружной и внутренней, толщина каждой из них 5–6 нм. Наружная мембрана выглядит растянутой, а внутренняя образует складки, называемые гребнями (кристами), различной формы. Пространство между мембранами, в состав которого входит также внутреннее пространство крист, называется межмембранным (перимитохондриальным) пространством. Оно служит средой для внутренней мембраны и матрикса митохондрий.

Митохондрии в целом содержат 65–70 % белка, 25–30 % липидов и небольшое количество нуклеиновых кислот. 70 % от общего содержания липидов составляют фосфолипиды (фосфатидилхолин и фосфатидилэтаноламин). Жирнокислотный состав характеризуется высоким содержанием насыщенных жирных кислот, обеспечивающих «жесткость» мембраны.

В митохондриях локализованы системы аэробного дыхания и окислительного фосфорилирования. В результате дыхания расщепляются органические молекулы, и высвобождается энергия с передачей ее на молекулу АТФ.

Митохондрии содержат белки, РНК, тяжи ДНК, рибосомы, сходные с бактериальными, и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеотидах.

Пластиды, наряду с вакуолями и клеточной оболочкой – характерные компоненты растительных клеток. Каждая пластида окружена собственной оболочкой, состоящей из двух элементарных мембран. Внутри пластид различают мембранную систему и более или менее гомогенное вещество – строму. Внутренняя структура хлоропласта довольно сложна. Строма пронизана развитой системой мембран, имеющих форму плоских пузырьков, называемых тилакоидами.Тилакоиды собраны в стопки – граны, напоминающие столбики монет.

Хлоропласты, в которых протекает фотосинтез, содержат хлорофиллы и каротиноиды. Размер – 4–5 мкм. В одной клетке мезофилла листа может содержаться 40–50 хлоропластов, в мм 2 листа – около 500 000. В цитоплазме хлоропласты обычно располагаются параллельно клеточной оболочке.

Хлорофиллы и каротиноиды встроены в тилакоидные мембраны. Хлоропласты зеленых растений и водорослей часто содержат зерна крахмала и мелкие липидные (жировые) капли. Крахмальные зерна – это временные хранилища продуктов фотосинтеза. Они могут исчезнуть из хлоропластов, находящихся в темноте всего лишь 24 ч и появиться вновь уже через 3–4 ч после переноса растений на свет.

В изолированных хлоропластах осуществляется синтез РНК, который обычно контролируется только хромосомной ДНК. Образование хлоропластов и синтез находящихся в них пигментов в значительной степени контролируется хромосомной ДНК, малопонятным образом взаимодействующей с ДНК хлоропластов. Тем не менее, в отсутствие собственной ДНК хлоропласты не формируются.

Хлоропласты могут считаться основными клеточными органеллами, поскольку первыми стоят в цепи преобразования солнечной энергии, в результате которого мы получаем пищу и топливо. В хлоропластах протекают не только фотосинтез. Они участвуют в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Хромопласты (от греческого сhroma – цвет) – пигментированные пластиды. Многообразные по форме хромопласты не содержат хлорофилла, но синтезируют и накапливают каротиноиды, которые придают желтую, оранжевую и другую окраску. Корнеплоды моркови, плоды томатов окрашены пигментами, которые находятся в хромопластах.

Лейкопласты являются местом накопления запасного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут преобразовываться в хлоропласты (клубни картофеля зеленеют). Осенью хлоропласты преобразуются в хромопласты и зеленые листья, и плоды желтеют и краснеют.

Митохондрия - это спиральная, округлая, вытянутая или разветвленная органелла.

Впервые понятие митохондрия было предложено Бенда в 1897 г. Митохондрии можно обнаружить в живых клетках с помощью фазово-контрастной и интерференционной микроскопии в виде зерен, гранул или нитей. Это довольно подвижные структуры, которые могут перемещаться, сливаться друг с другом, делиться. При окраске специальными методами в погибших клетках при световой микроскопии митохондрии имеют вид мелких зерен (гранул), диффузно распределенных в цитоплазме или концентрирующихся в каких-то определенных ее зонах.

В результате разрушения глюкозы и жиров в присутствии кислорода в митохондриях образуется энергия, а органические вещества превращаются в воду и диоксид углерода. Именно таким образом получают основную энергию, необходимую для жизнедеятельности, животные организмы. Энергия накапливается в аденозинтрифосфате (АТФ), а точнее, в его макроэргических связях. Функция митохондрий тесно связана с окислением органических соединений и использованием освобождающейся при их распаде энергии для синтеза молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки, или органеллами клеточного дыхания. АТФ выполняет функцию поставщика энергии, перенося одну из своих богатых энергией концевых фосфатных групп на другую молекулу, и превращается при этом в АДФ.

Предполагают, что в эволюции митохондрии были прокариотическими микроорганизмами, которые стали симбиотами в организме древней клетки. В последующем они стали жизненно необходимы, что было связано с увеличением содержания кислорода в атмосфере Земли. С одной стороны, митохондрии удаляли избыток токсичного для клетки кислорода, а с другой - обеспечивали энергией.

Без митохондрий клетка практически не в состоянии использовать кислород как вещество, обеспечивающее поставку энергии, и может восполнять свои энергетические потребности лишь путем анаэробных процессов. Таким образом, кислород - это яд, но яд жизненно важный для клетки, причем избыток кислорода так же вреден, как и его недостаток.

Митохондрии могут изменять свою форму и перемещаться в те области клетки, где потребность в них наиболее высока. Так, в кардиомиоцитах митохондрии находятся вблизи миофибрилл, в клетках почечных канальцев вблизи базальных впячиваний и т. д. В клетке содержится до тысячи митохондрий, и их количество зависит от активности клетки.

Митохондрии имеют средние поперечные размеры 0,5…3 мкм. В зависимости от размеров выделяют мелкие, средние, крупные и гигантские митохондрии (формируют разветвленную сеть - митохондриальный ретикулум). Размеры и число митохондрий тесно связаны с активностью клетки и ее энергопотреблением. Они крайне изменчивы и в зависимости от активности клетки, содержания кислорода, гормональных влияний могут набухать, изменять число и структуру крист, варьировать в числе, форме и размерах, а также ферментативной активности.

Объемная плотность митохондрий, степень развития их внутренней поверхности и другие показатели зависят от энергетических потребностей клетки. В лимфоцитах имеется всего по несколько митохондрий, а в печеночных клетках их 2…3 тыс.

Митохондрии состоят из матрикса, внутренней мембраны, перимитохондриального пространства и наружной мембраны. Наружная митохондриальная мембрана отделяет органеллу от гиалоплазмы. Обычно она имеет ровные контуры и замкнута так, что представляет собой мембранный мешок.

Внешнюю мембрану от внутренней отделяет перимитохондриальное пространство шириной около 10…20 нм. Внутренняя митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии - матрикс. Внутренняя мембрана образует многочисленные выпячивания внутрь митохондрий, которые имеют вид плоских гребней, или крист.

По форме кристы могут иметь вид пластинок (трабекулярные) и трубочек (мультивезикулярные на срезе), а направлены они продольно или поперечно по отношению к митохондрии.

Каждая митохондрия заполнена матриксом, который на электронных микрофотографиях выглядит плотнее, чем окружающая цитоплазма. Матрикс митохондрии однородный (гомогенный), иногда мелкозернистый, различной электронной плотности. В нем выявляют тонкие нити толщиной около 2…3 нм и гранулы размером около 15…20 нм. Нити матрикса представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы. В матриксе содержатся ферменты, одна одноцепочечная, циклическая ДНК, митохондриальные рибосомы, много ионов Са 2+ .

Автономная система белкового синтеза митохондрий представлена молекулами ДНК, свободными от гистонов. ДНК короткая, имеет форму кольца (циклическая) и содержит 37 генов. В отличие от ядерной ДНК в ней практически нет некодирующих последовательностей нуклеотидов. Особенности строения и организации сближают ДНК митохондрий с ДНК бактериальных клеток. На ДНК митохондрий происходит синтез молекул РНК разных типов: информационных, трансфертных (транспортных) и рибосомальных. Информационная РНК митохондрий не подвергается сплайсингу (вырезанию участков, не несущих информационной нагрузки). Малые размеры молекул митохондриальных ДНК не могут определить синтез всех белков митохондрий. Большинство белков митохондрий находится под генетическим контролем клеточного ядра и синтезируется в цитоплазме, так как ДНК митохондрий слабо выражена и может обеспечить образование лишь части ферментов цепи окислительного фосфорилирования. Митохондриальная ДНК кодирует не более десяти белков, которые локализованы в мембранах и представляют собой структурные белки, ответственные за правильную интеграцию отдельных функциональных белковых комплексов митохондриальных мембран. Синтезируются также белки, осуществляющие транспортные функции. Такая система белкового синтеза не обеспечивает всех функций митохондрии, поэтому автономия митохондрий ограниченная и относительная.

У млекопитающих митохондрии при оплодотворении передаются лишь через яйцеклетку, а спермий привносит в новый организм ДНК ядра.

В матриксе митохондрий образуются рибосомы, отличающиеся от рибосом цитоплазмы. Они участвуют в синтезе ряда митохондриальных белков, не кодируемых ядром. Митохондриальные рибосомы имеют число седиментации 60 (в отличие от цитоплазматических с числом седиментации 80). Число седиментации - это скорость осаждения при центрифугировании и ультрацентрифугировании. По строению митохондриальные рибосомы близки к рибосомам прокариотических организмов, но меньшего размера и отличаются чувствительностью к определенным антибиотикам (левомицетину, тетрациклину и др.).

Внутренняя мембрана митохондрии обладает высокой степенью избирательности при транспорте веществ. К ее внутренней поверхности прикрепляются тесно прилежащие друг к другу ферменты цепи окислительного фосфорилирования, белки-переносчики электронов, транспортные системы АТФ, АДФ, пируват и др. В результате тесного расположения ферментов на внутренней мембране обеспечивается высокая сопряженность (взаимосвязанность) биохимических процессов, повышающая скорость и эффективность каталитических процессов.

При электронной микроскопии выявляют грибовидные частицы, выступающие в просвет матрикса. Они обладают АТФ-синтетичной (образует АТФ из АДФ) активностью. Транспорт электронов идет по дыхательной цепи, локализованной во внутренней мембране, которая содержит четыре крупных ферментных комплекса (цитохромы). При прохождении электронов по дыхательной цепи ионы водорода откачиваются из матрикса в перимитохондриальное пространство, что обеспечивает формирование протонного градиента (помпы). Энергия этого градиента (различия в концентрации веществ и формирование мембранного потенциала) используется для синтеза АТФ и транспорта метаболитов и неорганических ионов. Содержащиеся на внутренней мембране белки-переносчики транспортируют через нее органические фосфаты, АТФ, АДФ, аминокислоты, жирные кислоты, три — и дикарбоновые кислоты.

Наружная мембрана митохондрии более проницаема для низкомолекулярных веществ, так как в ней много гидрофильных белковых каналов. На наружной мембране располагаются специфические рецепторные комплексы, через которые белки из матрикса транспортируются в перимитохондриальное пространство.

По своему химическому составу и свойствам наружная мембрана близка к другим внутриклеточным мембранам и плазмолемме. В ней содержатся ферменты, метаболизирующие жиры, активирующие (катализирующие) превращения аминов, аминооксидаза. Если ферменты наружной мембраны сохраняют активность, то это показатель функциональной сохранности митохондрий.

В митохондриях имеются два автономных субкомпартмента. Вели перимитохондриальное пространство, или наружная камера митохондрии (внешний субкомпартмент), формируется за счет проникновения белковых комплексов гиалоплазмы, то внутренний субкомпартмент (матрикс митохондрии) частично образован за счет синтетической активности митохондриальной ДНК. Во внутреннем субкомпартменте (матриксе) содержатся ДНК, РНК и рибосомы. Он отличается высоким уровнем ионов Са 2+ в сравнении с гиалоплазмой. Во внешнем субкомпартменте накапливаются ионы водорода. Ферментативная активность внешнего и внутреннего субкомпартментов, состав белков сильно различаются. Внутренний субкомпартмент имеет более высокую электронную плотность, чем внешний.

Специфические маркеры митохондрий - ферменты цитохром-оксидаза и сукцинатдегидрогеназа, выявление которых позволяет количественно охарактеризовать энергетические процессы в митохондриях.

Основная функция митохондрий - синтез АТФ. Вначале в гиалоплазме разрушаются сахара (глюкоза) до молочной и пировиноградной кислот (пирувата) с одновременным синтезом небольшого количества АТФ. В результате гликолиза одной молекулы глюкозы используется две молекулы АТФ, а образуется четыре. Таким образом, положительный баланс составляют всего две молекулы АТФ. Эти процессы совершаются без кислорода (анаэробный гликолиз).

Все последующие этапы выработки энергии происходят в процессе аэробного окисления, который обеспечивает синтез большого количества АТФ. При этом органические вещества разрушаются до СO 2 и воды. Окисление сопровождается переносом протонов на их акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые находятся в матриксе митохондрии.

В мембраны крист встроены системы переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). При этом происходит перенос электронов от одного белка-акцептора электронов к другому и, наконец, связывание их с кислородом, вследствие чего образуется вода. Одновременно с этим часть энергии, выделяемой при таком окислении в цепи переноса электронов, запасается в виде макроэргической связи при фосфорилировании АДФ, что приводит к образованию большого числа молекул АТФ - основного внутриклеточного энергетического эквивалента. На мембранах крист митохондрий происходит процесс окислительного фосфорилирования с помощью расположенных здесь белков цепи окисления и фермента фосфорилирования АДФ АТФ-синтетазы. В результате окислительного фосфорилирования из одной молекулы глюкозы образуется 36 молекул АТФ.

К некоторым гормонам и веществам на митохондриях имеются специализированные (аффинные) рецепторы. Трийодтиронин в норме ускоряет синтетическую активность митохондрий. Интерлейкин-1 и высокие концентрации трийодтиронина разобщают цепи окислительного фосфорилирования, вызывают набухание митохондрий, что сопровождается увеличением образования тепловой энергии.

Новые митохондрии образуются путем деления, перетяжкой или почкованием. В последнем случае образуется протомитохондрия, постепенно увеличивающаяся в размерах.

Протомитохондрия - мелкая органелла с наружной и внутренней мембранами. Внутренняя мембрана не имеет или содержит слаборазвитые кристы. Органелла характеризуется низким уровнем аэробного фосфорилирования. При образовании перетяжки содержимое митохондрии распределяется между двумя новыми довольно крупными органеллами. При любом способе размножения в каждой из вновь образующихся митохондрий имеется собственный геном.

Старые митохондрии разрушаются путем аутолиза (самопереваривания клеткой с помощью лизосом) с образованием аутолизосом. Из аутолизосомы образуется остаточное тельце. При полном переваривании содержимое остаточного тельца, состоящее из низкомолекулярных органических веществ, выводится путем экзоцитоза. При неполном переваривании остатки митохондрий могут накапливаться в клетке в виде слоистых телец или гранул с нипофусцином. В части митохондрий накапливаются нерастворимые соли кальция с образованием кристаллов - кальцинатов. Накопление продуктов дегенерации митохондрий может привести к дистрофии клетки.

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях (a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.