Оценка значимости уравнения регрессии в целом и его параметров. Оценка существенности параметров линейной регрессии и всего уравнения в целом

Для коэффициентов регрессионного уравнения проверка их уровня значимости осуществляется по t -критерию Стьюдента и по критерию F Фишера. Ниже мы рассмотрим оценку достоверности показателей регрессии только для линейных уравнений (12.1) и (12.2).

Y=a 0 + a 1 X (12.1)

Х= b 0 + b 1 Y (12.2)

Для это типа уравнений оценивают по t -критерию Стьюдента только величины коэффициентов а b 1с использованием вычисления величины Тф по следующим формулам:

Где r yx коэффициент корреляции, а величину а 1можно вычислить по формулам 12.5 или 12.7.

Формула (12.27) используется для вычисления величины Тф, а 1уравнения регрессии Y по X.

Величину b 1можно вычислить по формулам (12.6) или (12.8).

Формула (12.29) используется для вычисления величины Тф, которая позволяет оценить уровень значимости коэффициента b 1уравнения регрессии X по Y

Пример. Оценим уровень значимости коэффициентов регрессии а b 1уравнений (12.17), и (12.18), полученных при решении задачи 12.1. Воспользуемся для этого формулами (12.27), (12.28), (12.29) и (12.30).

Напомним вид полученных уравнений регрессии:

Y х = 3 + 0,06 X (12.17)

X y = 9+ 1 Y (12.19)

Величина а 1в уравнении (12.17) равна 0,06. Поэтому для расчета по формуле (12.27) нужно подсчитать величину Sb y х. Согласно условию задачи величина п = 8. Коэффициент корреляции также уже был подсчитан нами по формуле 12.9: r xy = √ 0,06 0,997 = 0,244 .

Осталось вычислить величины Σ (у ι - y ) 2 и Σ (х ι –x ) 2 , которые у нас не подсчитаны. Лучше всего эти расчеты проделать в таблице 12.2:

Таблица 12.2

№ испыту­емых п/п х ι у i х ι –x (х ι –x ) 2 у ι - y (у ι - y ) 2
-4,75 22,56 - 1,75 3,06
-4,75 22,56 -0,75 0,56
-2,75 7,56 0,25 0,06
-2,75 7,56 1,25 15,62
1,25 1,56 1,25 15,62
3,25 10,56 0,25 0,06
5,25 27,56 -0,75 0,56
5,25 27,56 0,25 0,06
Суммы 127,48 35,6
Средние 12,75 3,75

Подставляем полученные значения в формулу (12.28), получаем:

Теперь рассчитаем величину Тф по формуле (12.27):

Величина Тф проверяется на уровень значимости по таблице 16 Приложения 1 для t- критерия Стьюдента. Число степеней свободы в этом случае будет равно 8-2 = 6, поэтому критические значения равны соответственно для Р ≤ 0,05 t кр = 2,45 и для Р≤ 0,01 t кр =3,71. В принятой форме записи это выглядит так:

Строим «ось значимости»:

Полученная величина Тф Н о о том, что величина коэффициента регрессии уравнения (12.17) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.



Рассчитаем теперь уровень значимости коэффициента b 1. Для этого необходимо вычислить величину Sb xy по формуле (12.30), для которой уже расчитаны все необходимые величины:

Теперь рассчитаем величину Тф по формуле (12.27):

Мы можем сразу построить «ось значимости», поскольку все предварительные операции были проделаны выше:

Полученная величина Тф попала в зону незначимости, следовательно мы должны принять гипотезу H о о том, что величина коэффициента регрессии уравнения (12.19) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.

Нелинейная регрессия

Полученный в предыдущем разделе результат несколько обескураживает: мы получили, что оба уравнения регрессии (12.15) и (12.17) неадекватны экспериментальным данным. Последнее произошло потому, что оба эти уравнения характеризуют линейную связь между признаками, а мы в разделе 11.9 показали, что между переменными X и Y имеется значимая криволинейная зависимость. Иными словами, между переменными Х и Y в этой задаче необходимо искать не линейные, а криволинейные связи. Проделаем это с использованием пакета «Стадия 6.0» (разработка А.П. Кулаичева, регистрационный номер 1205).

Задача 12.2 . Психолог хочет подобрать регрессионную модель, адекватную экспериментальным данным, полученным в задаче 11.9.

Решение. Эта задача решается простым перебором моделей криволинейной регрессии предлагаемых в статистическом пакете Стадия. Пакет организован таким образом, что в электронную таблицу, которая является исходной для дальнейшей работы, заносятся экспериментальные данные в виде первого столбца для переменной X и второго столбца для переменной Y. Затем в основном меню выбирается раздел Статистики, в нем подраздел - регрессионный анализ, в этом подразделе вновь подраздел - криволинейная регрессия. В последнем меню даны формулы (модели) различных видов криволинейной регрессии, согласно которым можно вычислять соответствующие регрессионные коэффициенты и сразу же проверять их на значимость. Ниже рассмотрим только несколько примеров работы с готовыми моделями (формулами) криволинейной регрессии.



1. Первая модель - экспонента . Ее формула такова:

При расчете с помощью статпакета получаем а 0 = 1 и а 1 = 0,022.

Расчет уровня значимости для а, дал величину Р = 0,535. Очевидно, что полученная величина незначима. Следовательно, данная регрессионная модель неадекватна экспериментальным данным.

2. Вторая модель - степенная . Ее формула такова:

При подсчете а о = - 5,29, а, = 7,02 и а 1 = 0,0987.

Уровень значимости для а 1 - Р = 7,02 и для а 2 - Р = 0,991. Очевидно, что ни один из коэффициентов не значим.

3. Третья модель - полином . Ее формула такова:

Y = а 0 + а 1 X + а 2 X 2 + а 3 X 3

При подсчете а 0 = - 29,8, а 1 = 7,28, а 2 = - 0,488 и а 3 = 0,0103. Уровень значимости для а, - Р = 0,143, для а 2 - Р = 0,2 и для а, - Р= 0,272

Вывод - данная модель неадекватна экспериментальным данным.

4. Четвертая модель - парабола .

Ее формула такова: Y= a o + a l -X 1 + а 2 Х 2

При подсчете а 0 = - 9,88, а, = 2,24 и а 1 = - 0,0839 Уровень значимости для а 1 - Р = 0,0186, для а 2 - Р = 0,0201. Оба регрессионных коэффициента оказались значимыми. Следовательно, задача решена - мы выявили форму криволинейной зависимости между успешностью решения третьего субтеста Векслера и уровнем знаний по алгебре - это зависимость параболического вида. Этот результат подтверждает вывод, полученный при решении задачи 11.9 о наличии криволинейной зависимости между переменными. Подчеркнем, что именно с помощью криволинейной регрессии был получен точный вид зависимости между изучаемыми переменными.


Глава 13 ФАКТОРНЫЙ АНАЛИЗ

Основные понятия факторного анализа

Факторный анализ - статистический метод, который используется при обработке больших массивов экспериментальных данных. Задачами факторного анализа являются: сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных, поэтому факторный анализ используется как метод сокращения данных или как метод структурной классификации.

Важное отличие факторного анализа от всех описанных выше методов заключается в том, что его нельзя применять для обработки первичных, или, как говорят, «сырых», экспериментальных данных, т.е. полученных непосредственно при обследовании испытуемых. Материалом для факторного анализа служат корреляционные связи, а точнее - коэффициенты корреляции Пирсона, которые вычисляются между переменными (т.е. психологическими признаками), включенными в обследование. Иными словами, факторному анализу подвергают корреляционные матрицы, или, как их иначе называют, матрицы интеркорреляций. Наименования столбцов и строк в этих матрицах одинаковы, так как они представляют собой перечень переменных, включенных в анализ. По этой причине матрицы интеркорреляций всегда квадратные, т.е. число строк в них равно числу столбцов, и симметричные, т.е. на симметричных местах относительно главной диагонали стоят одни и те же коэффициенты корреляции.

Необходимо подчеркнуть, что исходная таблица данных, из которой получается корреляционная матрица, не обязательно должна быть квадратной. Например, психолог измерил три показателя интеллекта (вербальный, невербальный и общий) и школьные отметки по трем учебным предметам (литература, математика, физика) у 100 испытуемых - учащихся девятых классов. Исходная матрица данных будет иметь размер 100 × 6, а матрица интеркорреляций размер 6 × 6, поскольку в ней имеется только 6 переменных. При таком количестве переменных матрица интеркорреляций будет включать 15 коэффициентов и проанализировать ее не составит труда.

Однако представим, что произойдет, если психолог получит не 6, а 100 показателей от каждого испытуемого. В этом случае он должен будет анализировать 4950 коэффициентов корреляции. Число коэффициентов в матрице вычисляется по формуле n (n+1)/2 и в нашем случае равно соответственно (100×99)/2= 4950.

Очевидно, что провести визуальный анализ такой матрицы - задача труднореализуемая. Вместо этого психолог может выполнить математическую процедуру факторного анализа корреляционной матрицы размером 100 × 100 (100 испытуемых и 100 переменных) и таким путем получить более простой материал для интерпретации экспериментальных результатов.

Главное понятие факторного анализа - фактор. Это искусственный статистический показатель, возникающий в результате специальных преобразований таблицы коэффициентов корреляции между изучаемыми психологическими признаками, или матрицы интеркорреляций. Процедура извлечения факторов из матрицы интеркорреляций называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, выделяемые в результате факторизации, как правило, неравноценны по своему значению.

Элементы факторной матрицы называются или весами»; и они представляют собой коэффициенты корреляции данного фактора со всеми показателями, использованными в исследовании. Факторная матрица очень важна, поскольку она показывает, как изучаемые показатели связаны с каждым выделенным фактором. При этом факторный вес демонстрирует меру, или тесноту, этой связи.

Поскольку каждый столбец факторной матрицы (фактор) является своего рода переменной величиной, то сами факторы также могут коррелировать между собой. Здесь возможны два случая: корреляция между факторами равна нулю, в таком случае факторы являются независимыми (ортогональными). Если корреляция между факторами больше нуля, то в таком случае факторы считаются зависимыми (облическими). Подчеркнем, что ортогональные факторы в отличие от облических дают более простые варианты взаимодействий внутри факторной матрицы.

В качестве иллюстрации ортогональных факторов часто приводят задачу Л. Терстоуна, который, взяв ряд коробок разных размеров и формы, измерил в каждой из них больше 20 различных показателей и вычислил корреляции между ними. Профакторизовав полученную матрицу интеркорреляций, он получил три фактора, корреляция между которыми была равна нулю. Этими факторами были «длина», «ширина» и «высота».

Для того чтобы лучше уловить сущность факторного анализа, разберем более подробно следующий пример.

Предположим, что психолог у случайной выборки студентов получает следующие данные:

V 1 - вес тела (в кг);

V 2 - количество посещений лекций и семинарских занятий по предмету;

V 3 - длина ноги (в см);

V 4 - количество прочитанных книг по предмету;

V 5 - длина руки (в см);

V 6 - экзаменационная оценка по предмету (V - от английского слова variable - переменная).

При анализе этих признаков не лишено оснований предположение о том, что переменные V 1 , К 3 и V 5 - будут связаны между собой, поскольку, чем больше человек, тем больше он весит и тем длиннее его конечности. Сказанное означает, что между этими переменными должны получиться статистически значимые коэффициенты корреляции, поскольку эти три переменные измеряют некоторое фундаментальное свойство индивидуумов в выборке, а именно: их размеры. Точно так же вероятно, что при вычислении корреляций между V 2 , V 4 и V 6 тоже будут получены достаточно высокие коэффициенты корреляции, поскольку посещение лекций и самостоятельные занятия будут способствовать получению более высоких оценок по изучаемому предмету.

Таким образом, из всего возможного массива коэффициентов, который получается путем перебора пар коррелируемых признаков V 1 и V 2 , V t и V 3 и т.д., предположительно выделятся два блока статистически значимых корреляций. Остальная часть корреляций - между признаками, входящими в разные блоки, вряд ли будет иметь статистически значимые коэффициенты, поскольку связи между такими признаками, как размер конечности и успеваемость по предмету, имеют, скорее всего, случайный характер. Итак, содержательный анализ 6 наших переменных показывает, что они, по сути дела, измеряют только две обобщенные характеристики, а именно: размеры тела и степень подготовленности по предмету.

К полученной матрице интеркорреляций, т.е. вычисленным попарно коэффициентам корреляций между всеми шестью переменными V 1 - V 6 , допустимо применить факторный анализ. Его можно проводить и вручную, с помощью калькулятора, однако процедура подобной статистической обработки очень трудоемка. По этой причине в настоящее время факторный анализ проводится на компьютерах, как правило, с помощью стандартных статистических пакетов. Во всех современных статистических пакетах есть программы для корреляционного и факторного анализов. Компьютерная программа по факторному анализу по существу пытается «объяснить» корреляции между переменными в терминах небольшого числа факторов (в нашем примере двух).

Предположим, что, используя компьютерную программу, мы получили матрицу интеркорреляций всех шести переменных и подвергли ее факторному анализу. В результате факторного анализа получилась таблица 13.1, которую называют «факторной матрицей», или «факторной структурной матрицей».

Таблица 13.1

Переменная Фактор 1 Фактор 2
V 1 0,91 0,01
V 2 0,20 0,96
V 3 0,94 -0,15
V 4 0,11 0,85
V 5 0,89 0,07
V 6 -0,13 0,93

По традиции факторы представляются в таблице в виде столбцов, а переменные в виде строк. Заголовки столбцов таблицы 13.1 соответствуют номерам выделенных факторов, но более точно было бы их называть «факторные нагрузки», или «веса», по фактору 1, то же самое по фактору 2. Как указывалось выше, факторные нагрузки, или веса, представляют собой корреляции между соответствующей переменной и данным фактором. Например, первое число 0,91 в первом факторе означает, что корреляция между первым фактором и переменной V 1 равна 0,91. Чем выше факторная нагрузка по абсолютной величине, тем больше ее связь с фактором.

Из таблицы 13.1 видно, что переменные V 1 V 3 и V 5 имеют большие корреляции с фактором 1 (фактически переменная 3 имеет корреляцию близкую к 1 с фактором 1). В то же время переменные V 2 , V 3 и У 5 имеют корреляции близкие к 0 с фактором 2. Подобно этому фактор 2 высоко коррелирует с переменными V 2 , V 4 и V 6 и фактически не коррелирует с переменными V 1 , V 3 и V 5

В данном примере, очевидно, что существуют две структуры корреляций, и, следовательно, вся информация таблицы 13.1 определяется двумя факторами. Теперь начинается заключительный этап работы - интерпретация полученных данных. Анализируя факторную матрицу, очень важно учитывать знаки факторных нагрузок в каждом факторе. Если в одном и том же факторе встречаются нагрузки с противоположными знаками, это означает, что между переменными, имеющими противоположные знаки, существует обратно пропорциональная зависимость.

Отметим, что при интерпретации фактора для удобства можно изменить знаки всех нагрузок по данному фактору на противоположные.

Факторная матрица показывает также, какие переменные образуют каждый фактор. Это связано, прежде всего, с уровнем значимости факторного веса. По традиции минимальный уровень значимости коэффициентов корреляции в факторном анализе берется равным 0,4 или даже 0,3 (по абсолютной величине), поскольку нет специальных таблиц, по которым можно было бы определить критические значения для уровня значимости в факторной матрице. Следовательно, самый простой способ увидеть какие переменные «принадлежат» фактору – это значит отметить те из них, которые имеют нагрузки выше, чем 0,4 (или меньше чем - 0,4). Укажем, что в компьютерных пакетах иногда уровень значимости факторного веса определяется самой программой и устанавливается на более высоком уровне, например 0,7.

Так, из таблицы 13.1, следует вывод, что фактор 1 - это сочетание переменных V 1 К 3 и V 5 (но не V 1 , K 4 и V 6 , поскольку их факторные нагрузки по модулю меньше чем 0,4). Подобно этому фактор 2 представляет собой сочетание переменных V 2 , V 4 и V 6 .

Выделенный в результате факторизации фактор представляет собой совокупность тех переменных из числа включенных в анализ, которые имеют значимые нагрузки. Нередко случается, однако, что в фактор входит только одна переменная со значимым факторным весом, а остальные имеют незначимую факторную нагрузку. В этом случае фактор будет определяться по названию единственной значимой переменной.

В сущности, фактор можно рассматривать как искусственную «единицу» группировки переменных (признаков) на основе имеющихся между ними связей. Эта единица является условной, потому что, изменив определенные условия процедуры факторизации матрицы интеркорреляций, можно получить иную факторную матрицу (структуру). В новой матрице может оказаться иным распределение переменных по факторам и их факторные нагрузки.

В связи с этим в факторном анализе существует понятие «простая структура». Простой называют структуру факторной матрицы, в которой каждая переменная имеет значимые нагрузки только по одному из факторов, а сами факторы ортогональны, т.е. не зависят друг от друга. В нашем примере два общих фактора независимы. Факторная матрица с простой структурой позволяет провести интерпретацию полученного результата и дать наименование каждому фактору. В нашем случае фактор первый - «размеры тела», фактор второй - «уровень подготовленности».

Сказанное выше не исчерпывает содержательных возможностей факторной матрицы. Из нее можно извлечь дополнительные характеристики, позволяющие более детально исследовать связи переменных и факторов. Эти характеристики называются «общность» и «собственное значение» фактора.

Однако, прежде чем представить их описание, укажем на одно принципиально важное свойство коэффициента корреляции, благодаря которому получают эти характеристики. Коэффициент корреляции, возведенный в квадрат (т.е. помноженный сам на себя), показывает, какая часть дисперсии (вариативности) признака является общей для двух переменных, или, говоря проще, насколько сильно эти переменные перекрываются. Так, например, две переменные с корреляцией 0,9 перекрываются со степенью 0,9 х 0,9 = 0,81. Это означает, что 81% дисперсии той и другой переменной являются общими, т.е. совпадают. Напомним, что факторные нагрузки в факторной матрице - это коэффициенты корреляции между факторами и переменными, поэтому, возведенная в квадрат факторная нагрузка характеризует степень общности (или перекрытия) дисперсий данной переменной и данного фактором.

Если полученные факторы не зависят друг от друга («ортогональное» решение), по весам факторной матрицы можно определить, какая часть дисперсии является общей для переменной и фактора. Вычислить, какая часть вариативности каждой переменной совпадает с вариативностью факторов, можно простым суммированием квадратов факторных нагрузок по всем факторам. Из таблицы 13.1, например, следует, что 0,91 × 0,91 + + 0,01 × 0,01 = 0,8282, т.е. около 82% вариативности первой переменной «объясняется» двумя первыми факторами. Полученная величина называется общностью переменной, в данном случае переменной V 1

Переменные могут иметь разную степень общности с факторами. Переменная с большей общностью имеет значительную степень перекрытия (большую долю дисперсии) с одним или несколькими факторами. Низкая общность подразумевает, что все корреляции между переменными и факторами невелики. Это означает, что ни один из факторов не имеет совпадающей доли вариативности с данной переменной. Низкая общность может свидетельствовать о том, что переменная измеряет нечто качественно отличающееся от других переменных, включенных в анализ. Например, одна переменная, связанная с оценкой мотивации среди заданий, оценивающих способности, будет иметь общность с факторами способностей близкую к нулю.

Малая общность может также означать, что определенное задание испытывает на себе сильное влияние ошибки измерения или крайне сложно для испытуемого. Возможно, напротив, также, что задание настолько просто, что каждый испытуемый дает на него правильный ответ, или задание настолько нечетко по содержанию, что испытуемый не понимает суть вопроса. Таким образом, низкая общность подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо переменная измеряет другое понятие, либо переменная имеет большую ошибку измерения, либо существуют искажающие дисперсию признака различия между испытуемыми в вариантах ответа на это задание.

Наконец, с помощью такой характеристики, как собственное значение фактора, можно определить относительную значимость каждого из выделенных факторов. Для этого надо вычислить, какую часть дисперсии (вариативности) объясняет каждый фактор. Тот фактор, который объясняет 45% дисперсии (перекрытия) между переменными в исходной корреляционной матрице, очевидно, является более значимым, чем другой, который объясняет только 25% дисперсии. Эти рассуждения, однако, допустимы, если факторы ортогональны, иначе говоря, не зависят друг от друга.

Для того чтобы вычислить собственное значение фактора, нужно возвести в квадрат факторные нагрузки, и сложить их по столбцу. Используя данные таблицы 13.1 можно убедиться, что собственное значение фактора 1 составляет (0,91 × 0,91 + 0,20 × 0,20 + 0,94 × 0,94 + 0,11 × 0,11 + 0,84 × 0,84 + (- 0,13) ×

× (-0,13)) = 2,4863. Если собственное значение фактора разделить на число переменных (6 в нашем примере), то полученное число покажет, какая доля дисперсии объясняется данным фактором. В нашем случае получится 2,4863∙100%/6 = 41,4%. Иными словами, фактор 1 объясняет около 41% информации (дисперсии) в исходной корреляционной матрице. Аналогичный подсчет для второго фактора даст 41,5%. В сумме это будет составлять 82,9%.

Таким образом, два общих фактора, будучи объединены, объясняют только 82,9% дисперсии показателей исходной корреляционной матрицы. Что случилось с «оставшимися» 17,1%? Дело в том, что, рассматривая корреляции между 6 переменными, мы отмечали, что корреляции распадаются на два отдельных блока, и поэтому решили, что логично анализировать материал в понятиях двух факторов, а не 6, как и количество исходных переменных. Другими словами, число конструктов, необходимых, чтобы описать данные, уменьшилось с 6 (число переменных) до 2 (число общих факторов). В результате факторизации часть информации в исходной корреляционной матрице была принесена в жертву построению двухфакторной модели. Единственным условием, при котором информация не утрачивается, было бы рассмотрение шестифакторной модели.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров . Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации : Средняя ошибка аппроксимации не должна превышать 8–10%.

Оценка значимости уравнения регрессии в целом производится на основе F -критерия Фишера , которому предшествует дисперсионный анализ. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной y от среднего значения y раскладывается на две части – «объясненную» и «необъясненную»: где – общая сумма квадратов отклонений; – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений); – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов. Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F -критерия Фишера: Фактическое значение F -критерия Фишера сравнивается с

табличным значением F табл(a; k 1; k 2) при уровне значимости a и степенях свободы k 1 = m и k 2= n -m -1.При этом, если фактическое значение F - критерия больше табличного, то признается статистическая значимость уравнения в целом.

Для парной линейной регрессии m =1, поэтому

Величина F -критерия связана с коэффициентом детерминации R2 ее можно рассчитать по следующей формуле:

В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров . С этой целью по каждому из параметров определяется его стандартная ошибка: m b и m a . Стандартная ошибка коэффициента регрессии определяется по формуле:, где

Величина стандартной ошибки совместно с t –распределением Стьюдента при n -2 степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительного интервала. Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t -критерия Стьюдента: которое затем сравнивается с табличным значением при определенном уровне значимости a и числе степеней свободы (n-2). Доверительный интервал для коэффициента регрессии определяется как b ± t табл ×mb . Поскольку знак коэффициента регрессии указывает на рост результативного признака y при увеличении признака-фактора x (b >0), уменьшение результативного признака при увеличении признака-фактора (b <0) или его независимость от независимой переменной (b =0), то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -1,5 £ b £ 0,8. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Стандартная ошибка параметра a определяется по формуле: Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется t -критерий: , его величина сравнивается с табличным значением при n - 2 степенях свободы.


Оценка значимости уравнения множественной регрессии

Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа. Первое же построенное по выборке уравнение регрессии очень редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей важнейшей задачей эконометрического анализа является проверка качества уравнения регрессии. В эконометрике принята устоявшаяся схема такой проверки.

Итак, проверка статистического качества оцененного уравнения регрессии проводится по следующим направлениям:

· проверка значимости уравнения регрессии;

· проверка статистической значимости коэффициентов уравнения регрессии;

· проверка свойств данных, выполнимость которых предполагалась при оценивании уравнения (проверка выполнимости предпосылок МНК).

Проверка значимости уравнения множественной регрессии, так же как и парной регрессии, осуществляется с помощью критерия Фишера. В данном случае (в отличие от парной регрессии) выдвигается нулевая гипотеза Н 0 о том, что все коэффициенты регрессии равны нулю (b 1 =0, b 2 =0, … , b m =0). Критерий Фишера определяется по следующей формуле:

где D факт - факторная дисперсия, объясненная регрессией, на одну степень свободы; D ост - остаточная дисперсия на одну степень свободы; R 2 - коэффициент множественной детерминации; т х в уравнении регрессии (в парной линейной регрессии т = 1); п - число наблюдений.

Полученное значение F-критерия сравнивается с табличным при определенном уровне значимости. Если его фактическое значение больше табличного, тогда гипотеза Но о незначимости уравнения регрессии отвергается, и принимается альтернативная гипотеза о его статистической значимости.

С помощью критерия Фишера можно оценить значимость не только уравнения регрессии в целом, но и значимость дополнительного включения в модель каждого фактора. Такая оценка необходима для того, чтобы не загружать модель факторами, не оказывающими существенного влияния на результат. Кроме того, поскольку модель состоит из несколько факторов, то они могут вводиться в нее в различной последовательности, а так как между факторами существует корреляция, значимость включения в модель одного и того же фактора может различаться в зависимости от последовательности введения в нее факторов.

Для оценки значимости включения дополнительного фактора в модель рассчитывается частный критерий Фишера F xi . Он построен на сравнении прироста факторной дисперсии, обусловленного включением в модель дополнительного фактора, с остаточной дисперсией на одну степень свободы по регрессии в целом. Следовательно, формула расчета частного F-критерия для фактора будет иметь следующий вид:

где R 2 yx 1 x 2… xi … xp - коэффициент множественной детерминации для модели с полным набором п факторов; R 2 yx 1 x 2… x i -1 x i +1… xp - коэффициент множественной детерминации для модели, не включающей фактор x i ; п - число наблюдений; т - число параметров при факторах x в уравнении регрессии.

Фактическое значение частного критерия Фишера сравнивается с табличным при уровне значимости 0,05 или 0,1 и соответствующих числах степеней свободы. Если фактическое значение F xi превышает F табл , то дополнительное включение фактора x i в модель статистически оправдано, и коэффициент «чистой» регрессии b i при факторе x i статистически значим. Если же F xi меньше F табл , то дополнительное включение в модель фактора существенно не увеличивает долю объясненной вариации результата у, и, следовательно, его включение в модель не имеет смысла, коэффициент регрессии при данном факторе в этом случае статистически незначим.

С помощью частного критерия Фишера можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор x i вводится в уравнение множественной регрессии последним, а все остальные факторы были уже включены в модель раньше.

Оценка значимости коэффициентов «чистой» регрессии b i по критерию Стьюдента t может быть проведена и без расчета частных F -критериев. В этом случае, как и при парной регрессии, для каждого фактора применяется формула

t bi = b i / m bi ,

где b i - коэффициент «чистой» регрессии при факторе x i ; m bi - стандартная ошибка коэффициента регрессии b i .

Проверку значимости уравнения регрессии произведем на основе

F-критерия Фишера:

Значение F-критерия Фишера можно найти в таблице Дисперсионный анализ протокола Еxcel. Табличное значение F-критерия при доверительной вероятности α = 0,95 и числе степеней свободы, равном v1 = k = 2 и v2 = n – k – 1= 50 – 2 – 1 = 47, составляет 0,051.

Поскольку Fрасч > Fтабл, уравнение регрессии следует признать значимым, то есть его можно использовать для анализа и прогнозирования.

Оценку значимости коэффициентов полученной модели, используя результаты отчета Excel, можно осуществить тремя способами.

Коэффициент уравнения регрессии признается значимым в том случае, если:

1) наблюдаемое значение t-статистики Стьюдента для этого коэффициента больше, чем критическое (табличное) значение статистики Стьюдента (для заданного уровня значимости, например α = 0,05, и числа степеней свободы df = n – k – 1, где n – число наблюдений, а k – число факторов в модели);

2) Р-значение t-статистики Стьюдента для этого коэффициента меньше, чем уровень значимости, например, α = 0,05;

3) доверительный интервал для этого коэффициента, вычисленный с некоторой доверительной вероятностью (например, 95%), не содержит ноль внутри себя, то есть нижняя 95% и верхняя 95% границы доверительного интервала имеют одинаковые знаки.

Значимость коэффициентов a 1 и a 2 проверим по второму и третьему способам:

P-значение (a 1 ) = 0,00 < 0,01 < 0,05.

Р-значение (a 2 ) = 0,00 < 0,01 < 0,05.

Следовательно, коэффициенты a 1 и a 2 значимы при 1%-ном уровне, а тем более при 5%-ном уровне значимости. Нижние и верхние 95% границы доверительного интервала имеют одинаковые знаки, следовательно, коэффициенты a 1 и a 2 значимы.

Определение объясняющей переменной, от которой

Может зависеть дисперсия случайных возмущений.

Проверка выполнения условия гомоскедастичности

Остатков по тесту Гольдфельда–Квандта

При проверке предпосылки МНК о гомоскедастичности остатков в модели множественной регрессии следует вначале определить, по отношению к какому из факторов дисперсия остатков более всего нарушена. Это можно сделать в результате визуального исследования графиков остатков, построенных по каждому из факторов, включенных в модель. Та из объясняющих переменных, от которой больше зависит дисперсия случайных возмущений, и будет упорядочена по возрастанию фактических значений при проверке теста Гольдфельда–Квандта. Графики легко получить в отчете, который формируется в результате использования инструмента Регрессия в пакете Анализ данных).

Графики остатков по каждому из факторов двухфакторной модели

Из представленных графиков видно, что дисперсия остатков более всего нарушена по отношению к фактору Краткосрочная дебиторская задолженность.

Проверим наличие гомоскедастичности в остатках двухфакторной модели на основе теста Гольдфельда–Квандта.

    Упорядочим переменные Y и X2 по возрастанию фактора Х4 (в Excel для этого можно использовать команду Данные – Сортировка по возрастанию Х4):

    Данные, отсортированные по возрастанию X4:

  1. Уберем из середины упорядоченной совокупности С = 1/4 · n = 1/4 · 50 = 12,5 (12) значения. В результате получим две совокупности соответственно с малыми и большими значениями Х4.

    Для каждой совокупности выполним расчеты:

Сумма

111234876536,511

966570797682,068

455748832843,413

232578961097,877

834043911651,192

193722998259,505

1246409153509,290

31419681912489,100

2172804245053,280

768665257272,099

2732445494273,330

163253156450,331

18379855056009,900

10336693841766,000

Сумма

69977593738424,600

Уравнения для совокупностей

Y = -27275,746 + 0,126X2 + 1,817 X4

Y = 61439,511 + 0,228X2 + 0,140X4

Результаты данной таблицы получены с помощью инструмента Регрессия поочередно к каждой из полученных совокупностей.

4. Найдем отношение полученных остаточных сумм квадратов

(в числителе должна быть большая сумма):

5. Вывод о наличии гомоскедастичности остатков делаем с помощью F-критерия Фишера с уровнем значимости α = 0,05 и двумя одинаковыми степенями свободы k1 = k2 = == 17

где р – число параметров уравнения регрессии:

Fтабл (0,05; 17; 17) = 9,28.

Так как Fтабл > R ,то подтверждается гомоскедастичность в остатках двухфакторной регрессии.

ТЕМА 4. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ

Уравнение регрессии - этоаналитическое представление корреляционной зависимости. Уравнение регрессии описывает гипотетическую функциональную зависимость между условным средним значением результативного признака и значением признака – фактора (факторов), т.е. основную тенденцию зависимости.

Парная корреляционная зависимость описывается уравнением парной регрессии, множественная корреляционная зависимость – уравнением множественной регрессии.

Признак-результат в уравнении регрессии – это зависимая переменная (отклик, объясняемая переменная), а признак-фактор – независимая переменная (аргумент, объясняющая переменная).

Простейшим видом уравнения регрессии является уравнение парной линейной зависимости:

где y – зависимая переменная (признак-результат); x – независимая переменная (признак-фактор); и – параметры уравнения регрессии; - ошибка оценивания.

В качестве уравнения регрессии могут быть использованы различные математические функции. Частое практическое применение находят уравнения линейной зависимости, параболы, гиперболы, степной функции и др.

Как правило, анализ начинается с оценки линейной зависимости, поскольку результаты легко поддаются содержательной интерпретации. Выбор типа уравнения связи – достаточно ответственный этап анализа. В «докомпьютерную» эпоху эта процедура была сопряжена с определенными сложностями и требовала от аналитика знания свойств математических функций. В настоящее время на базе специализированных программ можно оперативно построить множество уравнений связи и на основе формальных критериев осуществить выбор лучшей модели (однако математическая грамотность аналитика не утратила своей актуальности).

Гипотезу о типе корреляционной зависимости можно выдвинуть по результатам построения поля корреляции (см. лекцию 6). Исходя из характера расположения точек на графике (координаты точек соответствуют значениям зависимой и независимой переменных), выявляется тенденция связи между признаками (показателями). Если линия регрессии проходит через все точки поля корреляции, то эта свидетельствует о функциональной связи. В практике социально-экономических исследований такую картину наблюдать не приходится, поскольку присутствует статистическая (корреляционная) зависимость. В условиях корреляционной зависимости при нанесении линии регрессии на диаграмму рассеивания наблюдается отклонение точек поля корреляции от линии регрессии, что демонстрирует, так называемые, остатки или ошибки оценивания (см. рисунок 7.1).

Наличие ошибки уравнения связано с тем, что:

§ не все факторы, влияющие на результат, учитываются в уравнении регрессии;

§ может быть неверно выбранаформа связи - уравнение регрессии;

§ не все факторы включены в уравнение.

Построить уравнение регрессии – означает рассчитать значения его параметров. Уравнение регрессии строится на основе фактических значений анализируемых признаков. Расчет параметров, как правило, выполняется с использованием метода наименьших квадратов (МНК).

Суть МНК состоит в том, что удается получить такие значения параметров уравнения, при которых минимизируется сумма квадратов отклонений теоретических значений признака-результата (рассчитанных на основе уравнения регрессии), от фактических его значений:

,

где - фактическое значение признака-результата у i-й единицы совокупности; - значение признака-результата у i-й единицы совокупности, полученное по уравнению регрессии ().

Т.о., решается задача на экстремум, то есть необходимо найти, при каких значениях параметров, функция S достигает минимума.

Проводя дифференцирование, приравнивая частные производные нулю:



, (7.3)

, (7.4)

где - среднее произведение значений фактора и результата; - среднее значение признака - фактора; - среднее значение признака -результата; - дисперсия признака-фактора.

Параметр в уравнении регрессии характеризует угол наклона линии регрессии на графике. Этот параметр называют коэффициентом регрессии и его величина характеризует, на сколько единиц своего измерения изменится признак-результат при изменении признака-фактора на единицу своего измерения. Знак при коэффициенте регрессии отражает направленность зависимости (прямая или обратная) и совпадает со знаком коэффициента корреляции (в условиях парной зависимости).

В рамках рассматриваемого примера, в программе STATISTICA рассчитаны параметры уравнения регрессии, описывающего зависимость между уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, см. таблицу 7.1.

Таблица 7.1 - Расчет и оценка параметров уравнения, описывающего зависимостьмежду уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, 2013 г.

В графе "В" таблицы содержатся значения параметров уравнения парной регрессии, следовательно, можно записать: = 13406,89 + 22,82 x.Данное уравнение описывает тенденцию связи между анализируемыми характеристиками. Параметр - это коэффициент регрессии. В данном случае он равен 22,82 и характеризует следующее: при увеличении ВРП на душу населения на 1 тыс.рублей среднедушевые денежные доходы в среднем возрастают (на что указывает знак "+") на 22,28 руб.

Параметр уравнения регрессии в социально-экономических исследованиях, как правило, содержательно не интерпретируется. Формально он отражает величину признака - результата при условии, что признак - фактор равен нулю. Параметр характеризует расположение линии регрессии на графике, см. рисунок 7.1.

Рисунок 7.1 - Поле корреляции и линия регрессии, отражающие зависимость уровня среднедушевых денежных доходов населения в регионах России и величины ВРП на душу населения

Значение параметра соответствует точке пересечения линии регрессии с осью Y, при X=0.

Построение уравнения регрессии сопровождается оценкой статистической значимости уравнения в целом и его параметров. Необходимость таких процедур связана с ограниченным объемом данных, что может препятствовать действию закона больших чисел и, следовательно, выявлению истинной тенденции во взаимосвязи анализируемых показателей. Кроме того, любую исследуемую совокупность можно рассматривать как выборку из генеральной совокупности, а характеристики, полученные в ходе анализа, как оценку генеральных параметров.

Оценка статистической значимости параметров и уравнения в целом – это обоснование возможности использования построенной модели связи для принятия управленческих решений и прогнозирования (моделирования).

Статистическая значимость уравнения регрессии в целом оценивается с использованием F-критерия Фишера , который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы:

где - факторная дисперсия признака - результата; k – число степеней свободы факторной дисперсии (число факторов в уравнении регрессии); - среднее значение зависимой переменной; - теоретическое (полученной по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности; - остаточная дисперсии признака - результата; n – объем совокупности; n-k-1 – число степеней свободы остаточной дисперсии.

Величина F-критерия Фишера, согласно формуле, характеризует соотношение между факторной и остаточной дисперсиями зависимой переменной, демонстрируя, по существу, во сколько раз величина объясненной части вариации превышает необъясненную.

F-критерий Фишера табулирован, входом в таблицу является число степеней свободы факторной и остаточной дисперсий. Сравнение расчетного значения критерия с табличным (критическим) позволяет ответить на вопрос: статистически значима ли та часть вариации признака-результата, которую удается объяснить факторами, включенными в уравнение данного вида. Если , то уравнение регрессии признается статистически значимым и, соответственно, статистически значим и коэффициент детерминации. В противном случае (), уравнение – статистически незначимо, т.е. вариация учтенных в уравнении факторов не объясняет статистически значимой части вариации признака-результата, либо не верно выбрано уравнение связи.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики , которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ():

, где ; (7.6)

, где ; (7.7)

где - стандартные отклонения признака - фактора и признака - результата; - коэффициент детерминации.

В специализированных статистических программах расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики (см. таблицу 7.1). Расчетное значение t-статистики сравнивается с табличным, если объем изучаемой совокупности менее 30 единиц (безусловно малая выборка), следует обратиться к таблице t- распределения Стьюдента, если объем совокупности большой, следует воспользоваться таблицей нормального распределения (интеграла вероятностей Лапласа). Параметр уравнения признается статистически значимым, если.

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H 0: =0; H 0: =0;), то есть о статистически не значимой величине параметров уравнения регрессии. Уровень значимости гипотезы, как правило, принимается: = 0,05. Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная - о статистической значимости параметра.

Продолжим рассмотрение примера. В таблице 7.1 в графе «B» приведены значения параметров, в графе Std.Err.ofB - величины стандартных ошибок параметров (), в графе t(77 – число степеней свободы) рассчитаны значения t - статистики с учетом числа степеней свободы. Для оценки статистической значимости параметров расчетные значения t - статистик необходимо сравнить с табличным значением. Заданному уровню значимости (0,05) в таблице нормального распределения соответствует t = 1,96. Поскольку 18,02, 10,84, т.е. , следует признать статистическую значимость полученных значений параметров, т.е. эти значения сформированы под влиянием не случайных факторов и отражают тенденцию связи между анализируемыми показателями.

Для оценки статистической значимости уравнения в целом обратимся к значению F-критерия Фишера (см. таблицу 7.1). Расчетное значение F-критерия = 117,51, табличное значение критерия, исходя из соответствующего числа степеней свободы (для факторной дисперсии d.f. =1, для остаточной дисперсииd.f. =77), равно 4,00 (см. приложение.....). Таким образом, , следовательно, уравнение регрессии в целом статистически значимо. В такой ситуации можно говорить и о статистической значимости величины коэффициента детерминации, т.е. вариация среднедушевых доходов населения в регионах России на 60 процентов может быть объяснена вариацией объемов валового регионального продукта на душу населения.

Проводя оценку статистической значимости уравнения регрессии и его параметров, можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы параметры (параметр) уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргумента и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. получена оценка значения признака-результата (y) при тех или иных значениях фактора (x).

Совершенно очевидно, что прогнозное значение зависимой переменной, рассчитанное на основе уравнения связи, не будет совпадать с фактическим ее значением ().Графически эта ситуация подтверждается тем, что не все точки поля корреляции лежат на линии регрессии,лишь при функциональной связи линия регрессии пройдет через все точки диаграммы рассеивания. Наличие расхождений между фактическими и теоретическими значениями зависимой переменной связано, прежде всего, с самой сутью корреляционной зависимости:одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в конкретном уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и фактора (тип уравнения регрессии). В связи с этим возникает вопрос, насколько информативно построенное уравнение связи. На этот вопрос отвечают два показателя: коэффициент детерминации (о нем уже говорилось выше) и стандартная ошибка оценивания.

Разность между фактическими и теоретическими значениями зависимой переменной называют отклонениями или ошибками, или остатками . На основе этих величин рассчитывается остаточная дисперсия. Квадратный корень из остаточной дисперсии и является среднеквадратической (стандартной) ошибкой оценивания:

= (7.8)

Стандартная ошибка уравнения измеряется в тех же единицах, что и прогнозируемый показатель. Если ошибки уравнения подчиняются нормальному распределению (при больших объемах данных), то 95 процентов значений должны находиться от линии регрессии на расстоянии, не превышающем 2S (исходя из свойства нормального распределения - правила трех сигм). Величина стандартной ошибки оценивания используется при расчете доверительных интервалов при прогнозировании значения признака - результата для конкретной единицы совокупности.

В практических исследованиях часто возникает необходимость в прогнозе среднего значения признака - результата при том или ином значении признака - фактора. В этом случае в расчете доверительного интервала для среднего значения зависимой переменной()

учитывается величина средней ошибки:

(7.9)

Использование разных величин ошибок объясняется тем, что изменчивость уровней показателей у конкретных единиц совокупности гораздо выше, чем изменчивость среднего значения, следовательно, ошибка прогноза среднего значения меньше.

Доверительный интервал прогноза среднего значения зависимой переменной:

, (7.10)

где - предельная ошибка оценки (см. теорию выборки); t – коэффициент доверия, значение которого находится в соответствующей таблице, исходя из принятого исследователем уровня вероятности (числа степеней свободы) (см. теорию выборки).

Доверительный интервал для прогнозируемого значения признака-результата может быть рассчитан и с учетом поправки на смещение (сдвиг) линии регрессии. Величина поправочного коэффициента определяется:

(7.11)

где - значение признака-фактора, исходя из которого, прогнозируется значение признака-результата.

Отсюда следует, что чем больше значение отличается от среднего значения признака-фактора, тем больше величина корректирующего коэффициента, тем больше ошибка прогноза. С учетом данного коэффициента доверительный интервал прогноза будет рассчитываться:

На точность прогноза на основе уравнения регрессии могут влиять разные причины. Прежде всего, следует учитывать, что оценка качества уравнения и его параметров проводится, исходя из предположения о нормальном распределении случайных остатков. Нарушение этого допущения может быть связано с наличием резко отличающихся значений в данных, с неравномерной вариацией, с наличием нелинейной зависимости. В этом случае качество прогноза снижается. Второй момент, о котором следует помнить, - значения факторов, учитываемые при прогнозировании результата, не должны выходить за пределы размаха вариации данных, на основе которых построено уравнение.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08