Оценка значимости уравнения регрессии и его коэффициентов

Проверку значимости уравнения регрессии произведем на основе

F-критерия Фишера:

Значение F-критерия Фишера можно найти в таблице Дисперсионный анализ протокола Еxcel. Табличное значение F-критерия при доверительной вероятности α = 0,95 и числе степеней свободы, равном v1 = k = 2 и v2 = n – k – 1= 50 – 2 – 1 = 47, составляет 0,051.

Поскольку Fрасч > Fтабл, уравнение регрессии следует признать значимым, то есть его можно использовать для анализа и прогнозирования.

Оценку значимости коэффициентов полученной модели, используя результаты отчета Excel, можно осуществить тремя способами.

Коэффициент уравнения регрессии признается значимым в том случае, если:

1) наблюдаемое значение t-статистики Стьюдента для этого коэффициента больше, чем критическое (табличное) значение статистики Стьюдента (для заданного уровня значимости, например α = 0,05, и числа степеней свободы df = n – k – 1, где n – число наблюдений, а k – число факторов в модели);

2) Р-значение t-статистики Стьюдента для этого коэффициента меньше, чем уровень значимости, например, α = 0,05;

3) доверительный интервал для этого коэффициента, вычисленный с некоторой доверительной вероятностью (например, 95%), не содержит ноль внутри себя, то есть нижняя 95% и верхняя 95% границы доверительного интервала имеют одинаковые знаки.

Значимость коэффициентов a 1 и a 2 проверим по второму и третьему способам:

P-значение (a 1 ) = 0,00 < 0,01 < 0,05.

Р-значение (a 2 ) = 0,00 < 0,01 < 0,05.

Следовательно, коэффициенты a 1 и a 2 значимы при 1%-ном уровне, а тем более при 5%-ном уровне значимости. Нижние и верхние 95% границы доверительного интервала имеют одинаковые знаки, следовательно, коэффициенты a 1 и a 2 значимы.

Определение объясняющей переменной, от которой

Может зависеть дисперсия случайных возмущений.

Проверка выполнения условия гомоскедастичности

Остатков по тесту Гольдфельда–Квандта

При проверке предпосылки МНК о гомоскедастичности остатков в модели множественной регрессии следует вначале определить, по отношению к какому из факторов дисперсия остатков более всего нарушена. Это можно сделать в результате визуального исследования графиков остатков, построенных по каждому из факторов, включенных в модель. Та из объясняющих переменных, от которой больше зависит дисперсия случайных возмущений, и будет упорядочена по возрастанию фактических значений при проверке теста Гольдфельда–Квандта. Графики легко получить в отчете, который формируется в результате использования инструмента Регрессия в пакете Анализ данных).

Графики остатков по каждому из факторов двухфакторной модели

Из представленных графиков видно, что дисперсия остатков более всего нарушена по отношению к фактору Краткосрочная дебиторская задолженность.

Проверим наличие гомоскедастичности в остатках двухфакторной модели на основе теста Гольдфельда–Квандта.

    Упорядочим переменные Y и X2 по возрастанию фактора Х4 (в Excel для этого можно использовать команду Данные – Сортировка по возрастанию Х4):

    Данные, отсортированные по возрастанию X4:

  1. Уберем из середины упорядоченной совокупности С = 1/4 · n = 1/4 · 50 = 12,5 (12) значения. В результате получим две совокупности соответственно с малыми и большими значениями Х4.

    Для каждой совокупности выполним расчеты:

Сумма

111234876536,511

966570797682,068

455748832843,413

232578961097,877

834043911651,192

193722998259,505

1246409153509,290

31419681912489,100

2172804245053,280

768665257272,099

2732445494273,330

163253156450,331

18379855056009,900

10336693841766,000

Сумма

69977593738424,600

Уравнения для совокупностей

Y = -27275,746 + 0,126X2 + 1,817 X4

Y = 61439,511 + 0,228X2 + 0,140X4

Результаты данной таблицы получены с помощью инструмента Регрессия поочередно к каждой из полученных совокупностей.

4. Найдем отношение полученных остаточных сумм квадратов

(в числителе должна быть большая сумма):

5. Вывод о наличии гомоскедастичности остатков делаем с помощью F-критерия Фишера с уровнем значимости α = 0,05 и двумя одинаковыми степенями свободы k1 = k2 = == 17

где р – число параметров уравнения регрессии:

Fтабл (0,05; 17; 17) = 9,28.

Так как Fтабл > R ,то подтверждается гомоскедастичность в остатках двухфакторной регрессии.

После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов, т.е. всего уравнения в целом. Такой анализ осуществляется на основе проверки гипотезы об общей значимости гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных:

H 0: b 1 = b 2 = ... = b m = 0.

Если данная гипотеза не отклоняется, то делается вывод о том, что совокупное влияние всех m объясняющих переменных Х 1 , Х 2 , ..., Х m модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравнения регрессии – невысоким.

Проверка данной гипотезы осуществляется на основе дисперсионного анализа сравнения объясненной и остаточной дисперсии.

Н 0: (объясненная дисперсия) = (остаточная дисперсия),

H 1: (объясненная дисперсия) > (остаточная дисперсия).

Строится F-статистика:

где – объясненная регрессией дисперсия;

– остаточная дисперсия (сумма квадратов отклонений, поделённая на число степеней свободы n-m-1). При выполнении предпосылок МНК построенная F-статистика имеет распределение Фишера с числами степеней свободы n1 = m, n2 = n–m–1. Поэтому, если при требуемом уровне значимости a F набл > F a ; m ; n - m -1 = F a (где F a ; m ; n - m -1 - критическая точка распределения Фишера), то Н 0 отклоняется в пользу Н 1 . Это означает, что объяснённая регрессией дисперсия существенно больше остаточной дисперсии, а следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной Y. Если F набл < F a ; m ; n - m -1 = F кр. , то нет основания для отклонения Н 0 . Значит, объясненная дисперсия соизмерима с дисперсией, вызванной случайными факторами. Это дает основание считать, что совокупное влияние объясняющих переменных модели несущественно, а следовательно, общее качество модели невысоко.

Однако на практике чаще вместо указанной гипотезы проверяют тесно связанную с ней гипотезу о статистической значимости коэффициента детерминации R 2:



Н 0: R 2 > 0.

Для проверки данной гипотезы используется следующая F-статистика:

. (8.20)

Величина F при выполнении предпосылок МНК и при справедливости H 0 имеет распределение Фишера, аналогичное распределению F-статистики (8.19). Действительно, разделив числитель и знаменатель дроби в (8.19) на общую сумму квадратов отклонений и зная, что она распадается на сумму квадратов отклонений, объяснённую регрессией, и остаточную сумму квадратов отклонений (это является следствием, как будет показано позже, системы нормальных уравнений)

,

мы получим формулу (8.20):

Из (8.20) очевидно, что показатели F и R 2 равны или не равны нулю одновременно. Если F = 0, то R 2 = 0, и линия регрессии Y = является наилучшей по МНК, и, следовательно, величина Y линейно не зависит от Х 1 , Х 2 , ..., Х m . Для проверки нулевой гипотезы Н 0: F = 0 при заданном уровне значимости a по таблицам критических точек распределения Фишера находится критическое значение F кр = F a ; m ; n - m -1 . Нулевая гипотеза отклоняется, если F > F кр. Это равносильно тому, что R 2 > 0, т.е. R 2 статистически значим.

Анализ статистики F позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации R 2 не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Пусть, например, при оценке регрессии с двумя объясняющими переменными X 1 i , X 2 i по 30 наблюдениям R 2 = 0,65. Тогда

F набл = =25,07.

По таблицам критических точек распределения Фишера найдем F 0,05; 2; 27 = 3,36; F 0,01; 2; 27 = 5,49. Поскольку F набл = 25,07 > F кр как при 5%–м, так и при 1%–м уровне значимости, то нулевая гипотеза в обоих случаях отклоняется.

Если в той же ситуации R 2 = 0,4, то

F набл = = 9.

Предположение о незначимости связи отвергается и здесь.

Отметим, что в случае парной регрессии проверка нулевой гипотезы для F-статистики равносильна проверке нулевой гипотезы для t-статистики

коэффициента корреляции. В этом случае F-статистика равна квадрату t-статистики. Самостоятельную значимость коэффициент R 2 приобретает в случае множественной линейной регрессии.

8.6. Дисперсионный анализ для разложения общей суммы квадратов отклонений. Степени свободы для соответствующих сумм квадратов отклонений

Применим изложенную выше теорию для парной линейной регрессии.

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом даётся с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. b = 0, и, следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчёту F-критерия предшествует анализ дисперсии. Центральное место в нём занимает разложение общей суммы квадратов отклонений переменной у от среднего значения на две части – “объяснённую” и “необъяснённую”:

Уравнение (8.21) является следствием системы нормальных уравнений, выведенных в одной предыдущих тем.

Доказательство выражения (8.21).

Осталось доказать, что последнее слагаемое равно нулю.

Если сложить от 1 до n все уравнения

y i = a+b×x i +e i , (8.22)

то получим åy i = a×å1+b×åx i +åe i . Так как åe i =0 и å1 =n, то получим

Тогда .

Если же вычесть из выражения (8.22) уравнение (8.23), то получим

В результате получим

Последние суммы равны нулю в силу системы двух нормальных уравнений.

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы. Если фактор на оказывает никакого влияния на результат, то линия регрессии параллельна оси OX и . Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связана с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объяснённая регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный влиянием фактора х, т.е. регрессией у по х, так и вызванный действием прочих причин (необъяснённая вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объяснённую вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное влияние на признак у. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Любая сумма квадратов связана с числом степеней свободы (df – degrees of freedom), с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых отклонений из n возможных требуется для образования данной суммы квадратов. Так, для общей суммы квадратов требуется (n-1) независимых отклонений, ибо по совокупности из n единиц после расчёта среднего свободно варьируют лишь (n-1) число отклонений. Например, мы имеем ряд значений у: 1,2,3,4,5. Среднее из них равно 3, и тогда n отклонений от среднего составят: -2, -1, 0, 1, 2. Так как , то свободно варьируют лишь четыре отклонения, а пятое отклонение может быть определено, если предыдущие четыре известны.

При расчёте объяснённой или факторной суммы квадратов используются теоретические (расчётные) значения результативного признака

Тогда сумма квадратов отклонений, обусловленных линейной регрессии, равна

Поскольку при заданном объёме наблюдений по x и y факторная сумма квадратов при линейной регрессии зависит только от константы регрессии b, то данная сумма квадратов имеет только одну степень свободы.

Существует равенство между числом степеней свободы общей, факторной и остаточной суммой квадратов отклонений. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет n-2. Число степеней свободы общей суммы квадратов определяется числом единиц варьируемых признаков, и поскольку мы используем среднюю вычисленную по данным выборки, то теряем одну степень свободы, т.е. df общ. = n–1.

Итак, имеем два равенства:

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений, или, что то же самое, дисперсию на одну степень свободы D.

;

;

.

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчёте на одну степень свободы, получим величину F-критерия Фишера

где F-критерий для проверки нулевой гипотезы H 0: D факт = D ост.

Если нулевая гипотеза справедлива, то факторная и остаточная дисперсии не отличаются друг от друга. Для H 0 необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором разработаны таблицы критических значений F-отношений при различных уровнях существенности нулевой гипотезы и различном числе степеней свободы. Табличное значение F-критерия – это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения признаётся достоверным, если оно больше табличного. Если F факт > F табл, то нулевая гипотеза H 0: D факт = D ост об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи.

Если F факт < F табл, то вероятность нулевой гипотезы H 0: D факт = D ост выше заданного уровня (например, 0,05) и она не может быть отклонена без серьёзного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Гипотеза H 0 не отклоняется.

В рассматриваемом примере из главы 3:

= 131200 -7*144002 = 30400 – общая сумма квадратов;

1057,878*(135,43-7*(3,92571) 2) = 28979,8 – факторная сумма квадратов;

=30400-28979,8 = 1420,197 – остаточная сумма квадратов;

D факт = 28979,8;

D ост = 1420,197/(n-2) = 284,0394;

F факт =28979,8/284,0394 = 102,0274;

F a =0,05; 2; 5 =6,61; F a =0,01; 2; 5 = 16,26.

Поскольку F факт > F табл как при 1%-ном, так и при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

Величина F-критерия связана с коэффициентом детерминации . Факторную сумму квадратов отклонений можно представить как

,

а остаточную сумму квадратов – как

.

Тогда значение F-критерия можно выразить как

.

Оценка значимости регрессии обычно даётся в виде таблицы дисперсионного анализа

, его величина сравнивается с табличным значением при определённом уровне значимости α и числе степеней свободы (n-2).
Источники вариации Число степеней свободы Сумма квадратов отклонений Дисперсия на одну степень свободы F-отношение
фактическое Табличное при a=0,05
Общая
Объяснённая 28979,8 28979,8 102,0274 6,61
Остаточная 1420,197 284,0394

Оценив параметры a и b , мы получили уравнение регрессии, по которому можно оценить значения y по заданным значениям x . Естественно полагать, что расчетные значения зависимой переменной не будут совпадать с действительными значениями, так как линия регрессии описывает взаимосвязь лишь в среднем, в общем. Отдельные значения рассеяны вокруг нее. Таким образом, надежность получаемых по уравнению регрессии расчетных значений во многом определяется рассеянием наблюдаемых значений вокруг линии регрессии. На практике, как правило, дисперсия ошибок неизвестна и оценивается по наблюдениям одновременно с параметрами регрессии a и b . Вполне логично предположить, что оценка связана с суммой квадратов остатков регрессии. Величина является выборочной оценкой дисперсии возмущений , содержащихся в теоретической модели . Можно показать, что для модели парной регрессии

где - отклонение фактического значения зависимой переменной от ее расчетного значения.

Если , то для всех наблюдений фактические значения зависимой переменной совпадают с расчетными (теоретическими) значениями. Графически это означает, что теоретическая линия регрессии (линия, построенная по функции ) проходит через все точки корреляционного поля, что возможно только при строго функциональной связи. Следовательно, результативный признак у полностью обусловлен влиянием фактора х.

Обычно на практике имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т. е. отклонения эмпирических данных от теоретических . Этот разброс обусловлен как влиянием фактора х , т.е. регрессией y по х , (такую дисперсию называют объясненной, так как она объясняется уравнением регрессии),так и действием прочих причин (необъясненная вариация, случайная). Величина этих отклонений и лежит в основе расчета показателей качества уравнения.

Согласно основному положению дисперсионного анализа общая сумма квадратов отклонений зависимой переменной y от среднего значения может быть разложена на две составляющие: объясненную уравнением регрессии и необъясненную:

,

где - значения y , вычисленные по уравнению .

Найдем отношение суммы квадратов отклонений, объясненной уравнением регрессии, к общей сумме квадратов:

, откуда

. (7.6)

Отношение части дисперсии, объясненной уравнением регрессии к общей дисперсии результативного признака называется коэффициентом детерминации . Значение не может превзойти единицы и это максимальное значение будет только достигнуто при , т.е. когда каждое отклонение равно нулю и поэтому все точки диаграммы рассеяния в точности лежат на прямой.

Коэффициент детерминации характеризует долю объясненной регрессией дисперсии в общей величине дисперсии зависимой переменной. Соответственно величина характеризует долю вариации (дисперсии) у, необъясненную уравнением регрессии, а значит, вызванную влиянием прочих неучтенных в модели факторов. Чем ближе к единице, тем выше качество модели.



При парной линейной регрессии коэффициент детерминации равен квадрату парного линейного коэффициента корреляции: .

Корень из этого коэффициента детерминации есть коэффициент (индекс) множественной корреляции, или теоретическое корреляционное отношение.

Для того чтобы узнать, действительно ли полученное при оценке регрессии значение коэффициента детерминации отражает истинную зависимость между y и x выполняют проверку значимости построенного уравнения в целом и отдельных параметров. Проверка значимости уравнения регрессии позволяет узнать, пригодно уравнение регрессии для практического использования, например, для прогноза или нет.

При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная гипотеза о значимости уравнения - гипотеза о неравенстве нулю параметров регрессии или о неравенстве нулю коэффициента детерминации: .

Для проверки значимости модели регрессии используют F- критерий Фишера, вычисляемый как отношение суммы квадратов (в расчете на одну независимую переменную) к остаточной сумме квадратов (в расчете на одну степень свободы):

, (7.7)

где k – число независимых переменных.

После деления числителя и знаменателя соотношения (7.7) на общую сумму квадратов отклонений зависимой переменной, F- критерий может быть эквивалентно выражен на основе коэффициента :

.

Если нулевая гипотеза справедлива, то объясненная уравнением регрессии и необъясненная (остаточная) дисперсии не отличаются друг от друга.

Расчетное значение F- критерий сравнивается с критическим значением, которое зависит от числа независимых переменных k , и от числа степеней свободы (n-k-1) . Табличное (критическое) значение F- критерия – это максимальная величина отношений дисперсий, которое может иметь место при случайном расхождении их для заданного уровня вероятности наличия нулевой гипотезы. Если расчетное значение F- критерий больше табличного при заданном уровне значимости, то нулевая гипотеза об отсутствии связи отклоняется и делается вывод о существенности этой связи, т.е. модель считается значимой.

Для модели парной регрессии

.

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его коэффициентов. Для этого определяется стандартная ошибка каждого из параметров. Стандартные ошибки коэффициентов регрессии параметров определяются по формулам:

, (7.8)

(7.9)

Стандартные ошибки коэффициентов регрессии или среднеквадратические отклонения, рассчитанные по формулам (7.8,7.9), как правило, приводятся в результатах расчета модели регрессии в статистических пакетах.

Опираясь на среднеквадратические ошибки коэффициентов регрессии, проверяют значимость этих коэффициентов используя обычную схему проверки статистических гипотез.

В качестве основной гипотезы выдвигают гипотезу о незначимом отличии от нуля «истинного» коэффициента регрессии. Альтернативной гипотезой при этом является гипотеза обратная, т. е. о неравенстве нулю «истинного» параметра регрессии. Проверка этой гипотезы осуществляется с помощью t- статистики, имеющей t -распределение Стьюдента:

Затем расчетные значения t- статистики сравниваются с критическими значениями t- статистики, определяемыми по таблицам распределения Стьюдента. Критическое значение определяется в зависимости от уровня значимости α и числа степеней свободы, которое равно (n-k-1), п - число наблюдений, k - число независимых переменных. В случае линейной парной регрессии число степеней свободы равно (п- 2). Критическое значение также может быть вычислено на компьютере с помощью встроенной функции СТЬЮДРАСПОБР пакета Ехсеl.

Если расчетное значение t- статистики больше критического, то основную гипотезу отвергают и считают, что с вероятностью (1-α) «истинный» коэффициент регрессии значимо отличается от нуля, что является статистическим подтверждением существования линейной зависимости соответствующих переменных.

Если расчетное значение t- статистики меньше критического, то нет оснований отвергать основную гипотезу, т. е. «истинный» коэффициент регрессии незначимо отличается от нуля при уровне значимости α . В этом случае фактор, соответствующий этому коэффициенту должен быть исключен из модели.

Значимость коэффициента регрессии можно установить методом построения доверительного интервала. Доверительный интервал для параметров регрессии a и b определяют следующим образом:

,

,

где определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы (п- 2) для парной регрессии.

Поскольку коэффициенты регрессии в эконометрических исследованиях имеют четкую экономическую интерпретацию, доверительные интервалы не должны содержать нуль. Истинное значение коэффициента регрессии не может одновременно содержать положительные и отрицательные величины, в том числе и нуль, иначе мы получаем противоречивые результаты при экономической интерпретации коэффициентов, чего не может быть. Таким образом, коэффициент значим, если полученный доверительный интервал не накрывает нуль.

Пример 7.4. По данным примера 7.1:

а) Построить парную линейную модель регрессии зависимости прибыли от реализации от отпускной цены с использованием программных средств обработки данных.

б) Оценить значимость уравнения регрессии в целом, используя F- критерий Фишера при α=0,05.

в) Оценить значимость коэффициентов модели регрессии, используя t -критерий Стьюдента при α=0,05 и α=0,1.

Для проведения регрессионного анализа используем стандартную офисную программу EXCEL. Построение регрессионной модели проведем с помощью инструмента РЕГРЕССИЯ настройки ПАКЕТ АНАЛИЗА (рис.7.5), запуск которого осуществляется следующим образом:

СервисАнализ данныхРЕГРЕССИЯОК.

Рис.7.5. Использование инструмента РЕГРЕССИЯ

В диалоговом окне РЕГРЕССИЯ в поле Входной интервал Y необходимо ввести адрес диапазона ячеек, содержащих зависимую переменную. В поле Входной интервал Х нужно ввести адреса одного или нескольких диапазонов, содержащих значения независимых переменных Флажок Метки в первой строке – устанавливается в активное состояние, если выделены и заголовки столбцов. На рис. 7.6. показана экранная форма вычисления модели регрессии с помощью инструмента РЕГРЕССИЯ.

Рис. 7.6. Построение модели парной регрессии с помощью

инструмента РЕГРЕССИЯ

В результате работы инструмента РЕГРЕСИЯ формируется следующий протокол регрессионного анализа (рис.7.7).

Рис. 7.7. Протокол регрессионного анализа

Уравнение зависимости прибыли от реализации от отпускной цены имеет вид:

Оценку значимости уравнения регрессии проведем используя F- критерий Фишера. Значение F- критерий Фишера возьмем из таблицы «Дисперсионный анализ» протокола EXCEL (рис. 7.7.). Расчетное значение F- критерия 53,372. Табличное значение F- критерия при уровне значимости α=0,05 и числе степеней свободы составляет 4,964. Так как , то уравнение считается значимым.

Расчетные значения t -критерия Стьюдента для коэффициентов уравнения регрессии приведены в результативной таблице (рис. 7.7). Табличное значение t -критерия Стьюдента при уровне значимости α=0,05 и 10 степенях свободы составляет 2,228. Для коэффициента регрессии a , следовательно коэффициент a не значим. Для коэффициента регрессии b , следовательно, коэффициент b значим.

Оценка значимости уравнения множественной регрессии

Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа. Первое же построенное по выборке уравнение регрессии очень редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей важнейшей задачей эконометрического анализа является проверка качества уравнения регрессии. В эконометрике принята устоявшаяся схема такой проверки.

Итак, проверка статистического качества оцененного уравнения регрессии проводится по следующим направлениям:

· проверка значимости уравнения регрессии;

· проверка статистической значимости коэффициентов уравнения регрессии;

· проверка свойств данных, выполнимость которых предполагалась при оценивании уравнения (проверка выполнимости предпосылок МНК).

Проверка значимости уравнения множественной регрессии, так же как и парной регрессии, осуществляется с помощью критерия Фишера. В данном случае (в отличие от парной регрессии) выдвигается нулевая гипотеза Н 0 о том, что все коэффициенты регрессии равны нулю (b 1 =0, b 2 =0, … , b m =0). Критерий Фишера определяется по следующей формуле:

где D факт - факторная дисперсия, объясненная регрессией, на одну степень свободы; D ост - остаточная дисперсия на одну степень свободы; R 2 - коэффициент множественной детерминации; т х в уравнении регрессии (в парной линейной регрессии т = 1); п - число наблюдений.

Полученное значение F-критерия сравнивается с табличным при определенном уровне значимости. Если его фактическое значение больше табличного, тогда гипотеза Но о незначимости уравнения регрессии отвергается, и принимается альтернативная гипотеза о его статистической значимости.

С помощью критерия Фишера можно оценить значимость не только уравнения регрессии в целом, но и значимость дополнительного включения в модель каждого фактора. Такая оценка необходима для того, чтобы не загружать модель факторами, не оказывающими существенного влияния на результат. Кроме того, поскольку модель состоит из несколько факторов, то они могут вводиться в нее в различной последовательности, а так как между факторами существует корреляция, значимость включения в модель одного и того же фактора может различаться в зависимости от последовательности введения в нее факторов.

Для оценки значимости включения дополнительного фактора в модель рассчитывается частный критерий Фишера F xi . Он построен на сравнении прироста факторной дисперсии, обусловленного включением в модель дополнительного фактора, с остаточной дисперсией на одну степень свободы по регрессии в целом. Следовательно, формула расчета частного F-критерия для фактора будет иметь следующий вид:

где R 2 yx 1 x 2… xi … xp - коэффициент множественной детерминации для модели с полным набором п факторов; R 2 yx 1 x 2… x i -1 x i +1… xp - коэффициент множественной детерминации для модели, не включающей фактор x i ; п - число наблюдений; т - число параметров при факторах x в уравнении регрессии.

Фактическое значение частного критерия Фишера сравнивается с табличным при уровне значимости 0,05 или 0,1 и соответствующих числах степеней свободы. Если фактическое значение F xi превышает F табл , то дополнительное включение фактора x i в модель статистически оправдано, и коэффициент «чистой» регрессии b i при факторе x i статистически значим. Если же F xi меньше F табл , то дополнительное включение в модель фактора существенно не увеличивает долю объясненной вариации результата у, и, следовательно, его включение в модель не имеет смысла, коэффициент регрессии при данном факторе в этом случае статистически незначим.

С помощью частного критерия Фишера можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор x i вводится в уравнение множественной регрессии последним, а все остальные факторы были уже включены в модель раньше.

Оценка значимости коэффициентов «чистой» регрессии b i по критерию Стьюдента t может быть проведена и без расчета частных F -критериев. В этом случае, как и при парной регрессии, для каждого фактора применяется формула

t bi = b i / m bi ,

где b i - коэффициент «чистой» регрессии при факторе x i ; m bi - стандартная ошибка коэффициента регрессии b i .

Для оценки существенности, значимости коэффициента корреляции используется t-критерий Стьюдента.

Находится средняя ошибка коэффициента корреляции по формуле:

Н
а основе ошибки рассчитываетсяt-критерий:

Рассчитанное значение t-критерия сравнивают с табличным, найденным в таблице распределения Стьюдента при уровне значимости 0,05 или 0,01 и числе степеней свободы n-1. Если расчетное значение t-критерия больше табличного, то коэффициент корреляции признается значимым.

При криволинейной связи для оценки значимости корреляционного отношения и уравнения регрессии применяется F-критерий. Он вычисляется по формуле:

или

где η – корреляционное отношение; n – число наблюдений; m – число параметров в уравнении регрессии.

Рассчитанное значение F сравнивается с табличным для принятого уровня значимости α (0,05 или 0,01) и чисел степеней свободы к 1 =m-1 и k 2 =n-m. Если расчетное значение F превышает табличное, связь признается существенной.

Значимость коэффициента регрессии устанавливается с помощью t-критерия Стьюдента, который вычисляется по формуле:

где σ 2 а i - дисперсия коэффициента регрессии.

Она вычисляется по формуле:

где к – число факторных признаков в уравнении регрессии.

Коэффициент регрессии признается значимым, если t a 1 ≥t кр. t кр отыскивается в таблице критических точек распределения Стьюдента при принятом уровне значимости и числе степеней свободы k=n-1.

4.3.Корреляционно-регрессионный анализ в Excel

Проведём корреляционно-регрессионный анализ взаимосвязи урожайности и затрат труда на 1 ц зерна. Для этого открываем лист Excel, в ячейки А1:А30 вводим значения факторного признака урожайности зерновых культур, в ячейки В1:В30 значения результативного признака – затраттруда на 1 ц зерна. В меню Сервис выберем опцию Анализ данных. Щелкнув левой кнопкой мыши по этому пункту, откроем инструмент Регрессия. Щелкаем по кнопке OK, на экране появляется диалоговое окно Регрессия. В поле Входной интервал У вводим значения результативного признака (выделяя ячейки В1:В30), в поле Входной интервал Х вводим значения факторного признака (выделяя ячейки А1:А30). Отмечаем уровень вероятности 95%, выбираем Новый рабочий лист. Щелкаем по кнопке OK. На рабочем листе появляется таблица «ВЫВОД ИТОГОВ», в которой даны результаты вычисления параметров уравнения регрессии, коэффициента корреляции и другие показатели, позволяющие определить значимость коэффициента корреляции и параметров уравнения регрессии.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

В данной таблице «Множественный R» - это коэффициент корреляции, «R-квадрат» - коэффициент детерминации. «Коэффициенты: Y-пересечение» - свободный член уравнения регрессии 2,836242; «Переменная Х1» – коэффициент регрессии -0,06654. Здесь имеются также значения F-критерия Фишера 74,9876, t-критерия Стьюдента 14,18042, «Стандартная ошибка 0,112121», которые необходимы для оценки значимости коэффициента корреляции, параметров уравнения регрессии и всего уравнения.

На основе данных таблицы построим уравнение регрессии: у х =2,836-0,067х. Коэффициент регрессии а 1 =-0,067 означает, что с повышением урожайности зерновых на 1 ц/га затраты труда на 1 ц зерна уменьшаются на 0,067 чел.-ч.

Коэффициент корреляции r=0,85>0,7, следовательно, связь между изучаемыми признаками в данной совокупности тесная. Коэффициент детерминации r 2 =0,73 показывает, что 73% вариации результативного признака (затрат труда на 1 ц зерна) вызвано действием факторного признака (урожайности зерновых).

В таблице критических точек распределения Фишера - Снедекора найдём критическое значение F-критерия при уровне значимости 0,05 и числе степеней свободы к 1 =m-1=2-1=1 и k 2 =n-m=30-2=28, оно равно 4,21. Так как рассчитанное значение критерия больше табличного (F=74.9896>4,21), то уравнение регрессии признаётся значимым.

Для оценки значимости коэффициента корреляции рассчитаем t-критерий Стьюдента:

В
таблице критических точек распределения Стьюдента найдём критическое значениеt-критерия при уровне значимости 0,05 и числе степеней свободы n-1=30-1=29, оно равно 2,0452. Так как расчётное значение больше табличного, то коэффициент корреляции является значимым.