Закон авогадро примеры. Где применяется число авогадро

Принцип, который в 1811 году сформулировал итальянский химик Амадео Авогадро (1776-1856), гласит: при одинаковых температурах и давлении в равных объемах газов будет содержаться одинаковое число молекул, независимо от их химической природы и физических свойств. Это число является физической константой, численно равной количеству молекул, атомов, электронов ионов или других частиц, содержащихся в одном моле. Позднее гипотеза Авогадро, подтвержденная большим числом экспериментов, стала считаться для одним из основных законов, вошедшим в науку под названием закон Авогадро, и его следствия все основаны на утверждении, что моль любого газа, в случае одинаковых условий, будет занимать одинаковый объем, называемый молярным.

Сам Амадео Авогадро предполагал, что физическая константа является очень большой величиной, но только множество независимых методов, уже после смерти ученого, позволили экспериментально установить число атомов, содержащееся в 12 г (является атомной единицей массы углерода) или в молярном объеме газа (при Т = 273,15 К и р =101,32 кПа), равном 22,41 л. Константу принято обозначать, как NA или реже L. Она названа в честь ученого — число Авогадро, и равняется оно, примерно, 6,022 . 1023. Это и есть число молекул любого газа, находящегося в объеме 22,41 л, оно одинаково и для легких газов (водорода), и для тяжелых газов Закон Авогадро математически можно выразить: V / n = VM, где:

  • V — объем газа;
  • n — количество вещества, которое является отношением массы вещества к его массе молярной;
  • VM — константа пропорциональности или молярный объем.

Принадлежал к благородному семейству, проживавшему в северной части Италии. Он родился 09.08.1776 в Турине. Его отец — Филиппо Авогадро — был служащим судебного ведомства. Фамилия на венецианском средневековом диалекте означала адвоката или чиновника, который взаимодействовал с людьми. По существовавшей в те времена традиции, должности и профессии передавались по наследству. Поэтому в 20 лет Амадео Авогадро получил степень, став доктором законоведения (церковного). Физику и математику он начал самостоятельно изучать в 25 лет. В своей научной деятельности занимался изучением и исследованиями в области электрохимии. Однако в историю науки Авогадро вошел, сделав к атомистической теории очень важное дополнение: ввел понятие о мельчайшей частице вещества (молекуле), способной существовать самостоятельно. Это было важно для объяснения простых объемных отношений между газами, вступившими в реакцию, а закон Авогадро стал иметь большое значение для развития науки и широко применяться на практике.

Но произошло это не сразу. Некоторыми химиками закон Авогадро был признан через десятилетия. Оппонентами итальянского профессора физики били такие знаменитые и признанные научные авторитеты, как Берцелиус, Дальтон, Дэви. Их заблуждения привели к многолетним спорам о химической формуле молекулы воды, так как существовало мнение, что ее следует записывать не H2O, а HO или H2O2. И только закон Авогадро помог установить состав и других простых и сложных веществ. Амадео Авогадро утверждал, что молекулы простых элементов состоят из двух атомов: O2, H2, Cl2, N2. Из чего следовало, что реакцию между водородом и хлором, в результате которой будет образован хлороводород, можно записать в виде: Cl2 + H2 → 2HCl. При взаимодействии одной молекулы Cl2 с одной молекулой H2, образуются две молекулы HCl. Объем, который будет занимать HCl, должен быть в два раза больше объема каждого, из вступивших в эту реакцию, компонентов, то есть должен равняться их суммарному объему. Только начиная с 1860 года, начал активно применяться закон Авогадро, и следствия из него позволили установить истинные значения атомных масс некоторых химических элементов.

Одним из основных выводов, сделанных на его основании, стало уравнение, описывающее состояние идеального газа: p .VM = R . T, где:

  • VM — молярный объем;
  • p — давление газа;
  • T — абсолютная температура, К;
  • R — универсальная газовая постоянная.

Объединенный также является следствием закона Авогадро. При постоянной массе вещества выглядит, как (p . V) / T = n . R = const, а его форма записи: (p1 . V1) / T1 = (p2 . V2) / T2 позволяет делать расчеты при переходе газа из одного состояния (обозначено индексом 1) в другое (с индексом 2).

Закон Авогадро позволил сделать и второй немаловажный вывод, открывший путь для экспериментального определения тех веществ, которые при переходе в газообразное состояние не разлагаются. M1 = M2 . D1, где:

  • M1 — масса молярная для первого газа;
  • M2 — масса молярная для второго газа;
  • D1 — относительная плотность первого газа, которую устанавливают по водороду или воздуху (по водороду: D1 = M1 / 2, по воздуху D1 = M1 / 29, где 2 и 29 — это молярные массы водорода и воздуха соответственно).

Закон Авогадро, открытый в 1811 г., сыграл большую роль в развитии хими. Прежде всего он способствовал признанию атомно-молекулярного учения, сформулированного впервые в середине XVIII в. М.В. Ломоносовым. Так, например, пользуясь числом Авогадро:

оказалось возможным вычислять не только абсолютные массы атомов и молекул, но и собственно линейные размеры этих частиц. Согласно закону Авогадро:

«В равных объёмах различных газов при постоянном давлении и температуре содержится одинаковое число молекул, равное »

Из закона Авогадро вытекает ряд важных следствий касающихся молярного объёма и плотности газов. Так, из закона Авогадро непосредственно следует, что одинаковое число молекул различных газов будут занимать одинаковый объём, равный 22,4 литра. Такой объём газов получил название молярного объёма . Верно и обратное – молярный объём различных газов одинаков и равен 22,4 л:

Действительно, поскольку 1 моль любого вещества содержит одинаковое число молекул, равное , то очевидно и их объёмы в газообразном состоянии при одинаковых условиях будут одинаковыми. Таким образом, при нормальных условиях (н.у.), т.е. при давлении и температуре молярный объём различных газов будет составлять . Количество вещества , объём и молярный объём газов могут быть связаны между собой в общем случае соотношением вида:


откуда соответственно:

В общем случае различают нормальные условия (н.у.):

к стандартным условиям относят:

Для того чтобы перевести температуру по шкале Цельсия в температуру по шкале Кельвина, используют следующее соотношение:

Массу собственно газа можно вычислить по значению его плотности , т.е.

Поскольку как было показано выше:

тогда очевидно:

откуда соответственно:


Из приведенных нами выше соотношений вида:

после подстановки в выражение:

также следует, что:

откуда соответственно:

и таким образом имеем:

Поскольку при нормальных условиях 1 моль любого занимает объём равный:

тогда соответственно:


Полученное таким образом соотношение достаточно важно для понимания 2-го следствия из закона Авогадро, которое в свою очередь непосредственно связано с таким понятием как относительная плотность газов . В общем случае, относительная плотность газов – величина, показывающая, во сколько раз один газ тяжелее или легче другого, т.е. во сколько раз плотность одного газа больше или меньше плотности другого, т.е. имеем соотношение вида:

Так, для первого газа имеем:

соответственно для второго газа:

тогда очевидно:

и таким образом:

Другими словами, относительная плотность газа есть отношение молекулярной массы исследуемого газа к молекулярной массе газа, с которым производится сравнение. Относительная плотность газа – безразмерная величина. Таким образом, для того чтобы вычислить относительную плотность одного газа по другому, достаточно знать молекулярные относительные молекулярные массы этих газов. Для того чтобы было понятно, с каким газом проводят сравнение, ставят индекс. Например, обозначает, что сравнение проводят с водороду и тогда говорят о плотности газа по водороду, не употребляя уже слово «относительная», принимая это как бы по умолчанию. Аналогично измерения проводят, беря в качестве газа сравнения – воздух. В этом случае указывают, что сравнение исследуемого газа проводят с воздухом . При этом средняя молекулярная масса воздуха принимается равной 29 , а поскольку относительная молекулярная масса и молярная масса численно совпадают, тогда:

Химическая формула исследуемого газа ставится рядом в скобках, например:

и читается как – плотность хлора по водороду. Зная относительную плотность одного газа по отношению к другому, можно вычислить молекулярную, а также молярную массу газа, даже если формула вещества неизвестна. Все приведенные выше соотношения относятся к так называемым нормальным условиям.

В уроке 23 «Закон Авогадро » из курса «Химия для чайников » поговорим о роли изучения газов для всей науки, а также дадим определение закону Авогадро. Этим уроком мы открываем третий раздел курса, под названием «Законы газового состояния». Рекомендую просмотреть прошлые уроки, так как в них изложены основы химии, которые понадобятся вам в изучении данной главы.

Предисловие к главе

Слово «Газ » происходит от хорошо известного греческого слова хаос. Химики гораздо позже подошли к изучению газов, чем других веществ. Твердые и жидкие вещества было значительно легче опознавать и отличать друг от друга, а представление о различных «воздухах» зарождалось очень медленно. Диоксид углерода был получен из известняка только в 1756 г. Водород открыли в 1766 г., азот — в 1772 г., а кислород — в 1781 г. Несмотря на столь позднее открытие газов, они являлись первыми веществами, физические свойства которых удавалось объяснить при помощи простых законов. Оказалось, что когда вещества, находящиеся в этом трудноуловимом состоянии, подвергаются изменениям температуры и давления, они ведут себя по гораздо более простым законам, чем твердые и жидкие вещества. Более того, одним из важнейших испытаний атомистической теории оказалась ее способность объяснить поведение газов. Эта история излагается в данной главе.

Заключив в замкнутый сосуд образец какого-либо газа, мы можем измерить его массу, объем, давление на стенки сосуда, вязкость, температуру, теплопроводность и скорость распространения нем звука. Легко также измерить скорость эффузии (истечения) газа через отверстие в сосуде и скорость, с которой один газ диффундирует (проникает) в другой. В данном разделе будет показано, что все эти свойства не являются независимыми друг от друга, а связаны при помощи довольно простой теории, основанной на предположении, что газы состоят из непрерывно движущихся и сталкивающихся частиц.

В развитие атомистической теории чрезвычайно важную роль сыграла гипотеза, выдвинутая в 1811 г. Амедо Авогадро (1776-1856). Авогадро предположил, что в равных объемах всех газов, при одинаковых температуре и давлении, содержится равное число молекул. Это означает, что плотность газа должна быть пропорциональна молекулярной массе данного газа. Под плотностью газа понимается его масса, приходящаяся на единицу объема и измеряемая в граммах на миллилитр (г/мл).

На гипотезу Авогадро обратили внимание лишь спустя 50 лет, которая после многочисленных испытаний было подтверждена и из гипотезы превратилась в закон Авогадро . В знак запоздалого признания незаслуженно обойденного вниманием ученого число молекул в моле вещества впоследствии получило название числа Авогадро , равное 6,022·10 23 .

Если воспользоваться законом Авогадро, то число молекул газа, а следовательно и число n его молей должно быть пропорционально объему V газа:

  • Число молей газа n = k·V (при постоянных P и Т)

В этом уравнении k — коэффициент пропорциональности, зависящий от температуры T и давления P .

В уроке 23 «Закон Авогадро » мы рассмотрели одну из многих закономерностей, присущих газам. В данной главе мы обсудим и другие закономерности, связывающие между собой давление газа P, его объем V, температуру T и число молей n в данном образце газа. Надеюсь урок был познавательным и понятным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

Высчитать объём, молярную массу, количество газообразного вещества и относительную плотность газа помогает закон Авогадро в химии. Гипотеза была сформулирована Амедео Авогадро в 1811 году, а позже была подтверждена экспериментально.

Закон

Первым исследовал реакции газов Жозеф Гей-Люссак в 1808 году. Он сформулировал законы теплового расширения газов и объёмных отношений, получив из хлористого водорода и аммиака (двух газов) кристаллическое вещество - NH 4 Cl (хлорид аммония). Выяснилось, что для его создания необходимо взять одинаковые объёмы газов. При этом если один газ был в избытке, то «лишняя» часть после реакции оставалась неиспользованной.

Чуть позже Авогадро сформулировал вывод о том, что при одинаковых температурах и давлении равные объёмы газов содержат одинаковое количество молекул. При этом газы могут обладать разными химическими и физическими свойствами.

Рис. 1. Амедео Авогадро.

Из закона Авогадро вытекает два следствия:

  • первое - один моль газа при равных условиях занимает одинаковый объём;
  • второе - отношение масс одинаковых объёмов двух газов равно отношению их молярных масс и выражает относительную плотность одного газа по другому (обозначается D).

Нормальными условиями (н.у.) считаются давление Р=101,3 кПа (1 атм) и температура Т=273 К (0°С). При нормальных условиях молярный объём газов (объём вещества к его количеству) составляет 22,4 л/моль, т.е. 1 моль газа (6,02 ∙ 10 23 молекул - постоянное число Авогадро) занимает объём 22,4 л. Молярный объём (V m) - постоянная величина.

Рис. 2. Нормальные условия.

Решение задач

Главное значение закона - возможность проводить химические расчёты. На основе первого следствия закона можно вычислить количество газообразного вещества через объём по формуле:

где V - объём газа, V m - молярный объём, n - количество вещества, измеряемое в молях.

Второй вывод из закона Авогадро касается расчёта относительной плотности газа (ρ). Плотность высчитывается по формуле m/V. Если рассматривать 1 моль газа, то формула плотности будет выглядеть следующим образом:

ρ (газа) = M/V m ,

где M - масса одного моля, т.е. молярная масса.

Для расчёта плотности одного газа по другому газу необходимо знать плотности газов. Общая формула относительной плотности газа выглядит следующим образом:

D (y) x = ρ(x) / ρ(y),

где ρ(x) - плотность одного газа, ρ(y) - второго газа.

Если подставить в формулу подсчёт плотности, то получится:

D (y) x = M(х) / V m / M(y) / V m .

Молярный объём сокращается и остаётся

D (y) x = M(х) / M(y).

Рассмотрим практическое применение закона на примере двух задач:

  • Сколько литров СО 2 получится из 6 моль MgCO 3 при реакции разложения MgCO 3 на оксид магния и углекислый газ (н.у.)?
  • Чему равна относительная плотность CO 2 по водороду и по воздуху?

Сначала решим первую задачу.

n(MgCO 3) = 6 моль

MgCO 3 = MgO+CO 2

Количество карбоната магния и углекислого газа одинаково (по одной молекуле), поэтому n(CO 2) = n(MgCO 3) = 6 моль. Из формулы n = V/V m можно вычислить объём:

V = nV m , т.е. V(CO 2) = n(CO 2) ∙ V m = 6 моль ∙ 22,4 л/моль = 134,4 л

Ответ: V(СО 2) = 134,4 л

Решение второй задачи:

  • D (H2) CO 2 = M(CO 2) / M(H 2) = 44 г/моль / 2 г/моль = 22;
  • D (возд) CO 2 = M(CO 2) / M (возд) = 44 г/моль / 29 г/моль = 1,52.

Рис. 3. Формулы количества вещества по объёму и относительной плотности.

Формулы закона Авогадро работают только для газообразных веществ. Они не применимы к жидкостям и твёрдым веществам.

Что мы узнали?

Согласно формулировке закона равные объёмы газов при одинаковых условиях содержат одинаковое количество молекул. При нормальных условиях (н.у.) величина молярного объёма постоянна, т.е. V m для газов всегда равняется 22,4 л/моль. Из закона следует, что одинаковое количество молекул разных газов при нормальных условиях занимают одинаковый объём, а также относительная плотность одного газа по другому - отношение молярной массы одного газа к молярной массе второго газа.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 230.

Пусть температура постоянна (\(T=const \) ), давление не изменяется (\(p=const \) ), объем постоянный \((V=const) \) : \((N) \) - число частиц (молекул) любого идеального газа величина неизменная. Это утверждение называется законом Авогадро.

Закон Авогадро звучит следующим образом:

В равных объемах газов (V ) при одинаковых условиях (температуре Т и давлении Р ) содержится одинаковое число молекул.

Закон Авогадро был открыт в 1811 г Амедео Авогадро . Предпосылкой для это­го стало правило кратных отношений: при одинаковых ус­ловиях объемы газов, вступа­ющих в реакцию, находятся в простых соотношениях, как 1:1, 1:2, 1:3 и т. д.

Французский ученый Ж.Л. Гей-Люссак установил закон объемных отношений:

Объемы вступающих в реакцию газов при одинаковых условиях (температуре и давлении) относятся друг к другу как простые целые числа.

Например, 1 л хлора соединяется с 1 л водорода, образуя 2 л хлороводорода; 2 л оксида серы (IV) соединяются с 1 л кислорода, образуя 1 л оксида серы (VI).

Реальные газы, как правило, являются смесью чистых газов - кислорода, водоро­да, азота, гелия и т. п. Например, воздух состоит из 77 % азота, 21 % кислорода, 1 % водорода, остальные - инертные и прочие газы. Каждый из них создает давление на стенки сосуда, в котором находится.

Парциальное давление Давление, которое в смеси газов создает каждый газ в отдельности, как будто он один занимает весь объем, называется парциальным давлением (от лат. partialis - частичный)

Нормальные условия: p = 760 мм рт. ст. или 101 325 Па , t = 0 °С или 273 К .

Следствия из закона Авогадро

Следствие 1 из закона Авогадро Один моль любого газа при одинаковых условиях занимает одинаковый объем. В частности при нормальных условиях объем одного моля идеального газа равен 22,4 л . Этот объем называют молярным объемом \(V_{\mu} \)

где \(V_{\mu} \) - молярный объем газа (размерность л/моль); \(V \) - объем вещества системы; \(n \) - количество вещества системы. Пример записи: \(V_{\mu} \) газа (н.у.) = 22,4 л/моль.

Следствие 2 из закона Авогадро Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эта величина называется относительной плотностью \(D \)

где \(m_1 \) и \(m_2 \) - молярные массы двух газообразных веществ.

Величина \(D \) определяется экспериментально как отношение масс одинаковых объемов исследуемого газа \(m_1 \) и эталонного газа с известной молекулярной массой (М2). По величинам \(D \) и \(m_2 \) можно найти молярную массу исследуемого газа: \(m_1 = D \cdot m_2 \)

Таким образом, при нормальных условиях (н.у.) молярный объем любого газа \(V_{\mu} = 22,4 \) л/моль.

Относительную плотность чаще всего вычисляют по отношению к воздуху или водороду, используя, что молярные массы водорода и воздуха известны и равны, соответственно:

\[ {\mu }_{H_2}=2\cdot {10}^{-3}\frac{кг}{моль} \]

\[ {\mu }_{vozd}=29\cdot {10}^{-3}\frac{кг}{моль} \]

Очень часто при решении задач используется то, что при нормальных условиях (н.у.) (давлении в одну атмосферу или, что тоже самое \(p={10}^5Па=760\ мм\ рт.ст,\ t=0^o C \) ) молярный объем любого идеального газа:

\[ \frac{RT}{p}=V_{\mu }=22,4\cdot {10}^{-3}\frac{м^3}{моль}=22,4\frac{л}{моль}\ . \]

Концентрацию молекул идеального газа при нормальных условиях:

\[ n_L=\frac{N_A}{V_{\mu }}=2,686754\cdot {10}^{25}м^{-3}\ , \]

называют числом Лошмидта .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!