Альдегиды состав и строение. Альдегиды и кетоны — номенклатура, получение, химические свойства

Вопрос 1. Альдегиды. Их строение, свойства, получение и применение.

Ответ. Альдегиды – органические вещества, молекулы которых

Общая формула альдегидов ˸

Номенклатура

Наименование альдегидов производят от исторических названий карбоновых кислот с тем же числом атомов углерода. Так, CH 3 CHO – уксусный альдегид. По систематической номенклатуре название альдегидов производят от названий углеводородов с прибавлением окончания –аль , CH 3 CHO – этаналь. Нумерацию углеродной цепи начинают с карбонильной группы. Для разветвленных изомеров перед названием альдегида записывают названия заместителей с указанием цифрой и номера углеродного атома, с которым они связаны˸

CH 3 – CH (CH 3) – CH 2 – CHO.

3-метилбутаналь

Изомерия

Углеродного скелета ˸

CH 3 – CH 2 – CH 2 – CHO – бутаналь,

CH 3 – CH(CH 3) – CHO – 2-метилпропаналь.

Классов соединений ˸

CH 3 – CH 2 – CHO – пропаналь,

CH 3 – CO – CH 3 – пропанон (ацетон).

Физические свойства

Метаналь – газ, альдегид от C 2 до С 13 – жидкости, высшее альдегиды – твердые вещества (тетрадеканаль или миристиновый альдегид CH 3 (CH 2) 12 CHO имеет температуру плавления 23,5 ). Низшие альдегиды хорошо растворимы в воде; чем больше атомов углерода в молекуле, тем меньше растворимость; у альдегидов нет водородной связей.

Химические свойства

1. Реакции присоединения ˸

а) гидрирование ˸

CH 2 O + H 2 = CH 3 OH;

б) образование ацеталий со спиртами ˸

CH 3 - CH 2 – CHO + 2C 2 H 5 OH = CH 3 – CH 2 – CH(OC 2 H 5) 2 + H 2 O.

2. Реакция окисления˸

а) реакция ʼʼсеребряного зеркалаʼʼ ˸

CH 3 CHO + Ag 2 O 2 Ag + CH 3 COOH;

б) взаимодействие с гидрооксидом меди (II) ˸

CH 3 CHO + 2Cu(OH) 2 CH 3 COOH + Cu 2 O↓ + 2H 2 O

3. Реакции замещения˸

CH 3 CH 2 CHO + Br 2 = CH 3 – CH (Br) – CHO+ HBr

4.Полимеризация˸

CH3=O (CH 2 O) 3 .

триоксиметилен

5.Поликонденсация˸

n C 6 H 5 OH + n CH 2 O + n C 6 H 5 OH + …=

=[ C 6 H 4 (OH) – CH 2 – C 6 H 4 (OH)] n + n H 2 O

Фенолформальдегидная смола

Получение

а) Окисление алканов˸

CH 4 + O 2 CH 2 O + H 2 O.

метаналь

б) Окисление спиртов˸

2CH 3 OH + O 2 2CH 2 O + 2H 2 O.

в) Реакция Кучерова˸

C 2 H 2 + H 2 O CH 3 CHO.

г) Окисление алкенов˸

C 2 H 4 + [O] CH 3 CHO.

Применение˸

1. Получение фенолформальдегидных смол, пластмасс.

2. Производство лекарств, формалина (из CH 2 =O).

3. Производство красителей.

4. Производство уксусной кислоты.

5. Дезинфекция и протравливание семян.

Вопрос 2. Проблема защита окружающей среды .

Ответ ˸ На сегодняшний день самым крупномасштабным является загрязнение окружающей среды химическими веществами.

Охрана атмосферы

Источники загрязнения˸ предприятия чёрной и цветной металлургии, теплоэлектростанции, автотранспорт.

Промышленность˸ выбросы оксидов серы и азота. В результате обжига сульфидных руд цветных металлов выделяется оксид серы (IV).

Теплоэлектростанции выделяют SO 2 и SO 3 ,которые соединяются с влагой воздуха (SO 3 + H 2 O = H 2 SO 4)и выпадают с виде кислотных дождей.

Вопрос 1. Альдегиды. Их строение, свойства, получение и применение. - понятие и виды. Классификация и особенности категории "Вопрос 1. Альдегиды. Их строение, свойства, получение и применение." 2015, 2017-2018.

Класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная кислота - уксусный альдегид). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические альдегиды и другие. Если радикалом является остаток спирта, карбоновой кислоты и прочее, образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие химическими свойствами, присущими альдегидам и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с альдегидами реакции. Один из простейших альдегидов - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения альдегида из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:

Эта реакция применяется при синтетическом производстве уксусной кислоты. Ароматические альдегиды обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и химические свойства альдегидов Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из альдегидов - муравьиный, или формальдегид

альдегидная группировка которого связана с водородом, является газом; низшие альдегиды (например, ацетальдегид) - жидкости с резким запахом; высшие альдегиды - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода альдегиды относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций альдегидов характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

Альдегиды легко полимеризуются и конденсируются (см. Альдольная конденсация); при обработке альдегидов щелочами или кислотами получаются альдоли, например:

При отщеплении воды альдоль превращается в кротоновый альдегид

способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биологических субстратов (крови, мочи и так далее) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и прочие, но не могут считаться специфическими.

Альдегиды играют большую роль в биологических процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в альдегиды с последующим их окислением в жирные кислоты.

Радикалы альдегиды высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный альдегид. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных альдегидов. (анисовый, коричный, ванилин и другие).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида, превращающегося путем восстановления в этиловый спирт.

Альдегиды широко используются в синтезе многих органических соединений. В медицинской практике применяются как непосредственно альдегиды (см. Формалин , Паральдегид , Цитраль), так и синтетические производные, получаемые из альдегидов, например, уротропин (см. Гексаметилентетрамин), хлоралгидрат (см.) и другие.

Альдегиды как профессиональные вредности

Аьдегиды широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется главным образом в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и так далее; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и так далее). Более подробно - смотри статьи, посвященные отдельным альдегидам.

Все альдегиды, особенно низшие, обладают выраженным токсическим действием.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия альдегиды являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физико-химических свойств альдегидов: низшие альдегиды (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть альдегидов падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных альдегидов сильнее, чем у предельных.

Механизм токсического действия альдегидов связан с высокой реакционной способностью карбонильной группы альдегидов, которая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции центральной нервной системы, дистрофические изменения внутренних органов и так далее. Кроме того, попадая в организм, альдегиды подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами альдегиды, а продукты их превращений. Альдегиды медленно выводятся из организма, способны кумулировать, чем объясняется развитие хронических отравлений, основные проявления которых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлении альдегидами. Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика

Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция). Использование индивидуальных средств защиты, например фильтрующего противогаза марки «А» (см. Противогазы), спецодежды (см. Одежда) и так далее.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов. Все альдегиды суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой кислотой. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

Библиография

Бауер К. Г. Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф. и Латыпова З. В. Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С., Гинзбург С. Л. и Xализова О. Д. Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь, Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С. и Сергеева Т. И. Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В. Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М. К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н. а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F. u. Onnen K. Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H. a. Touraine R. G. Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E. A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).

Что вообще такое альдегиды? Ответ на этот вопрос не так прост, как может показаться на первый взгляд. Спросите об этом любителя парфюмерии со стажем - скорее всего он вам расскажет про синтетические материалы с трудноописуемым запахом, которые сделали аромат таким необычным, абстрактным и новаторским.

Химик или даже обычный одиннадцатиклассник, регулярно посещавший уроки химии, тоже не будет особо раздумывать и скажет, что альдегиды - это класс органических соединений, содержащие группу -СНО , которую называют альдегидной группой. У всех альдегидов есть общие химические свойства, например, они легко окисляются с образованием соответствующих кислот. На этом основана реакция серебряного зеркала - помните, когда пробирку нагревают и на поверхности стекла появляется блестящий металлический слой. Само слово «альдегид», придуманное немецким химиком Юстасом фон Либихом, является сокращенным alcohol dehydrogenatum, что означает «спирт без водорода ».

В тривиальных названиях альдегидов часто* (см.сноску) присутствует либо само слово «альдегид», либо суффикс -аль , например, «пельменный альдегид», «жабальдегид», «кочергаль». Такие вещества, как ванилин и гелиотропин - тоже альдегиды с химической точки зрения. Вообще в арсенале парфюмера огромное количество альдегидов с совершенно различными запахами: мелональ пахнет дыней, адоксаль пахнет морем и яичным белком, цитронеллаль - лемонграссом, лираль - ландышем, триплаль - зелёной травой. Есть цикламенальдегид, коричный альдегид, анисовый, куминовый, мандариновый.

Хорошо, спросите вы, причём тут Шанель? Если альдегидов так много и все они пахнут по-разному, то что же это за такая «альдегидная нота», чем она пахнет и какие конкретно альдегиды входят в состав Chanel №5? Помните хармсовские «Анекдоты из жизни Пушкина»: «Пушкин очень полюбил Жуковского и стал называть его по-приятельски Жуковым»? То, что парфюмеры часто называют по-приятельски просто альдегидами, на самом деле некий подвид и частный случай: насыщенные алифатические или так называемые жирные альдегиды. Их принято называть по числу атомов углерода в молекуле. У «альдегида С-7», или гептаналя , - семь атомов углерода, у «альдегида С-10», деканаля , как нетрудно догадаться, десять.

В состав Chanel №5 входит смесь из альдегидов "С-11 undecylic" или "С-110" (ундеканаля), "С-11 undecylenic" (10-ундеценаля) и С-12 (додеканаля). Стоит отметить, что альдегиды появились в составе духов задолго до возникновения этого легендарного аромата [Chanel №5 была выпущена в 1921 году ]. Многие историки парфюмерии сходятся на том, что впервые альдегиды использовались при создании , вернее, его переиздания 1905 года, созданное парфюмером Пьером Армижаном (Pierre Armigeant). Есть альдегиды и в (1912), и в Bouquet de Catherine (1913) московской фабрики Alphonse Rallet & Co, созданные, как и Сhanel №5, парфюмером Эрнестом Бо (кстати говоря, коренным москвичом). Но именно Шанель, несомненно, стала главным альдегидным ароматом всех времен и народов, породив огромное количество подражаний и копий.

Жирные альдегиды объединяет характерный восковой запах, похожий на запах задутой свечки (собственно, этот свечной запах и обусловлен жирными альдегидами, продуктами неполного сгорания парафина). Запах у жирных альдегидов очень интенсивный и резкий, приятным он становится при разбавлении до 1% или меньше. Запах деканаля (С-10) имеет оттенок цедры, запах альдегида С-12 имеет нюансы лилии и фиалки. У простейших альдегидов, формальдегида и ацетальдегида, запах крайне резкий и довольно неприятный (тем не менее даже ацетальдегид используется флейвористами и входит в состав некоторых вкусоароматичских добавок), у гексаналя (альдегида С-6) уже можно различить сравнительно приятные зеленые и яблочные аспекты. Жирные альдегиды, у которых в цепочке 15 атомов углерода и больше, уже практически лишены запаха.

У запаха жирных альдегидов есть ещё одно общее свойство - некая «мылкость». Альдегиды давно и активно используются для отдушки мыла по причине своей невысокой стоимости, интенсивности запаха и способности хорошо маскировать неприятные оттенки запаха мыльной основы. Часто альдегидный запах ассоциируется с абстрактной чистотой или с ощущением от свежевыглаженного белья.

Ещё один важный момент, на который стоит отдельно обратить внимание - альдегиды не являются чем-то искусственным, результатом труда человека. Многие из них широко встречаются в природе. Деканаль, например, содержится в эфирных маслах цитрусовых (в апельсиновом до 4%!), хвойных и многих цветочных растений, много его в эфирном масле кориандра. Ненасыщенные алифатические альдегиды тоже повсеместно встречаются в природе, они обладают ещё более интенсивным запахом, например, (E)-2-деценаль отвечает за характерный запах кинзы, он же действительно часто присутствует в «химическом оружии» клопов, а эпоксипроизводное, транс-4,5-эпокси-(Е)-2-деценаль, обуславливает характерный запах крови, который и придаёт ей выраженный металлический аспект. Именно по запаху этого вещества хищники выслеживают свою добычу.

На волне успеха первых цветочно-альдегидных ароматов химики неустанно работали над синтезом новых материалов с похожими ольфакторными свойствами. В 1905 году французы E.E.Blaise и L.Huillon (Bull.Soc.Chim.Fr. 1905, 33, 928) синтезировали гамма-ундекалактон, чуть позже, в 1908 году, аналогичную работу опубликовали и два русских химика А.А. Жуков и П.И. Шестаков (ЖРХО 40, 830, 1908). Это соединением обладало интересным ароматом, напоминающим запах разогретого на солнце спелого персика - фруктовым, восковым и несколько кокосово-сливочным.

Производители решили продавать это вещество под названием «альдегид С-14», чтобы с одной стороны удовлетворить жажду парфюмеров в новых «альдегидах с цифрами», а с другой стороны ввести в заблуждение конкурентов, ведь на самом деле с химической точки зрения это был не альдегид, а лактон (циклический сложный эфир), да и атомов в молекуле у этого соединения не 14, а 11. Как в анекдоте, «не в шахматы, а в преферанс, не выиграл, а проиграл».

Так называемый «альдегид С-14» с огромным успехом в 1919 году дебютировал в аромате Guerlain Mitsouko, а чуть позже появились новые похожие материалы: «альдегид C-16 (клубничный)», «альдегид C-18 (кокосовый)», «альдегид C-20 (малиновый)» и некоторые другие. Вот и получается, что с одной стороны чуть ли не каждое третье душистое вещество является альдегидом, а с другой стороны - некоторые самые главные альдегиды вовсе никакие и не альдегиды.

* Химики пользуются несколькими типами названий. Первый тип - систематические, или номенклатурные. Номенклатурное название - это своего рода шифр, алгоритм, благодаря которому можно воссоздать структуру вещества, то есть понять какие атомы и каким образом соединены внутри молекулы. Каждому названию соответствует единственная структура и наоборот - для каждого вещества есть только одно номенклатурное название. Альдегиды, согласно номенклатуре, должны иметь суффикс «аль». Единственный, но весьма существенный минус таких названий - громоздкость. Например, обсуждавшийся в прошлый раз изо е супер согласно номенклатурным правилам должен называться «1-(1,2,3,4,5,6,7,8-октагидро-2,3,8,8,-тетраметил-2-нафтил)этанон-1». Трудно себе представить, во что бы превратились будни лабораторий, если бы химики пользовались только номенклатурными названиями («Василий, передайте, пожалуйста, вон ту колбу с цис-3-диметилметокси…»).

По этой причине чаще пользуются названиями тривиальными. Тривиальное название это как бы прозвище, nickname вещества. Оно ничего не говорит нам о строении и структуре, но оно короткое и запоминающееся. Ванилин, дихлофос, промедол, парабен - это всё тривиальные названия. Разные компании могут выпускать одно и то же соединение под разными названиями, обычно такие названия принято называть торговыми марками. 2ацетилоксибензойная кислота - это номенклатурное название, ацетилсалициловая кислота - тривиальное, а аспирин - торговая марка. Производители синтетических душистых веществ любят давать своим материалам яркие звучные названия. Часто альдегиды (с химической точки зрения) получают название с суффиксом «аль» на конце. Но зная любовь парфюмеров к альдегидам иногда названия с «аль» даются веществам, представляющим собой что-то совершенно иное. Например Clonal, продукт компании IFF, на самом деле нитрил, а Mystikal, каптивный материал компании Givaudan - карбоновая кислота. По сути, тот же трюк, что и с «альдегидом С-14».

Альдегидами называются органические соединения, в которых карбонильная группа (С-О) связана с водородом и радикалом R (остатки алифатических, ароматических и гетероциклических соединений):

Полярность карбонильной группы обеспечивает полярность молекулы в целом, поэтому альдегиды имеют более высокие температуры кипения, чем неполярные соединения сравнимой молекулярной массы.

Поскольку атомы водорода в альдегидах связаны только с атомом углерода (близкие относительные электроотрицательности), межмолекулярные водородные связи не образуются. Поэтому температуры кипения альдегидов ниже, чем у соответствующих спиртов или карбоновых кислот. В качестве примера можно сравнить температуры кипения метанола (Т^ 65 °С), муравьиной кислоты (Гкип 101 °С) и формальдегида (7^, -21 °С).

Низшие альдегиды растворимы в воде, вероятно, вследствие образования водородных связей между молекулами растворенного вещества и растворителя. Высшие альдегиды хорошо растворяются в большинстве обычных органических растворителей (спирты, эфиры). Низшие альдегиды имеют резкий запах, у альдегидов с С3-С6 весьма неприятный запах, в то время как высшие альдегиды обладают цветочными запахами и применяются в парфюмерии.

В химическом отношении альдегиды - весьма реакционноспособные соединения. Наиболее характерны для альдегидов реакции нуклеофильного присоединения, что обусловлено присутствием в молекуле электрофильного центра - карбонильного атома углерода группы С=0.

Многие из этих реакций, например, образование оксимов, семикарбазонов и других соединений, используются в качественном и количественном анализе ЛС из группы альдегидов потому, что продукты присоединения альдегидов характеризуются определенной для каждого альдегида температурой плавления. Так, альдегиды при встряхивании с насыщенным раствором гидросульфита натрия легко вступают в реакцию присоединения:

Продукты присоединения представляют собой соли, имеющие определенную температуру плавления, хорошо растворимы в воде, но не растворимы в органических растворителях.

При нагревании с разбавленными кислотами гидросульфитные производные гидролизуются до исходных соединений.

Способностью альдегидов образовывать гидросульфитные производные пользуются как для определения подлинности препарата с альдегидной группой в молекуле, так и для очистки альдегидов и выделения их из смесей с другими веществами, не реагирующими с гидросульфитом натрия.


Альдегиды также легко присоединяют аммиак и другие азотсодержащие нуклеофилы. Продукты присоединения обычно малоустойчивы и легко подвергаются дегидратации и полимеризации. Образующиеся в результате полимеризации циклические соединения при нагревании с разбавленными кислотами легко разлагаются, вновь освобождая альдегид:
r-ch-nh2 г з -NH R-СС
-зн2о "
он

Альдегиды легко окисляются. Оксид серебра(І) и другие окислители с невысоким значением окислительного потенциала способны окислять альдегиды. Например, для альдегидов характерна реакция образования серебряного зеркала, которая протекает с аммиачным раствором AgN03:

AgN03 + 3NH3 - OH + NH4N03

Реактив Толленса

При этом на стенках пробирки образуется зеркальный налет металлического серебра:

2OH + RCOH 2Agi + RCOOH + 4NH3T + Н20

Аналогично альдегиды могут восстанавливать медь(П) до меди(1). Для проведения реакции к раствору альдегида добавляют реактив Фелинга (щелочной раствор тартратного комплекса меди(П)) и нагревают. Сначала образуется желтый осадок гидроксида меди(1) - СиОН, а затем красный - оксида меди(1) - Си20:

2KNa + RCOH + 3NaOH + 2КОН -

2CuOHi + RCOONa + 4KNaC4H406 + 2H20 2CuOH - Cu20 + H20

К окислительно-восстановительным относится также реакция взаимодействия альдегидов с реактивом Несслера в щелочной среде; при этом выпадает темный осадок восстановленной ртути:

K2 + RCOH + ЗКОН - RCOOK + 4KI + Hgl + 2Н20

Следует иметь в виду, что реакция с реактивом Несслера более чувствительна, поэтому ее используют для обнаружения примесей альдегидов в ЛС. Подлинность лекарственных средств, содержащих альдегидную группу, подтверждают менее чувствительными реакциями: серебряного зеркала или с реактивом Фелинга. Некоторые другие соединения, например полифенолы, также окисляются соединениями Ag(I) и Си(П), т.е. реакция не является специфической.


Формальдегид и уксусный альдегид склонны к полимеризации. Формальдегид полимеризуется, образуя циклические тримеры, тетрамеры или линейные полимеры. Реакция полимеризации протекает в результате нуклеофильной атаки кислорода одной молекулы карбонильного атома углерода другой:

Так, из 40 % водного раствора формальдегида (формалина) образуется линейный полимер - параформ (и = 8 - 12), тример и тетрамер.

Для альдегидов характерны наркотические и дезинфицирующие свойства. По сравнению со спиртами альдегидная группа усиливает токсичность вещества. Введение галогена в молекулу альдегида повышает его наркотические свойства. Например, наркотические свойства хлораля более выражены, чем у уксусного альдегида:

с!3с-сС

Получение. Альдегиды могут быть получены окислением первичных спиртов хромовой кислотой (Na2Cr04, H2S04) при кипячении или перманганатом калия в щелочной среде:

Дегидрирование первичных спиртов осуществляют над медным катализатором (Си, Сг203) при 300-400 °С.

Промышленное производство метаналя основано на парофазном окислении метанола с железомолибденовым катализатором:

2СН3ОН + 02 500 ~600 2СН2=0 + Н20

Раствор формальдегида (формалин)

Получение. Формалин - это водный раствор формальдегида (40 %), стабилизированный метанолом (6-10 %). Европейская Фармакопея содержит ФС «Формальдегида раствор (35 %)» (см. табл. 9.1). В лабораторных условиях формальдегид может быть получен дегидрированием метанола над медью или деполимеризацией параформа.

Определение подлинности. Фармакопейный способ - реакция серебряного зеркала.

Поскольку формальдегид легко вступает в реакции конденсации, например, с гидроксилсодержащими ароматическими соединениями с образованием окрашенных соединений, ГФ рекомендует также использовать для его идентификации реакцию с салициловой кислотой, в результате которой появляется красное окрашивание:

H2S04
НО
соон

Аналогично протекает реакция с хромотроповой кислотой с образованием синефиолетовых и красно-фиолетовых продуктов (ЕФ).

Для определения подлинности фармальдегида могут быть использованы реакции с азотсодержащими нуклеофилами, например первичными аминами:

H-Ctf° + H2N-R - н-с^^К + Н20

Образующиеся N-замещенные имины (основания Шиффа) малорастворимы, некоторые из них окрашены, другие дают окрашенные соединения с ионами тяжелых металлов. ЕФ предлагает реакцию с фенилгидразином. В присутствии калия феррици- анида в кислой среде образуются продукты реакции интенсивно красного цвета.

Испытания на чистоту. Контроль примеси муравьиной кислоты осуществляют, определяя кислотность. Согласно ГФ, концентрация муравьиной кислоты в препарате не должна превышать 0,2 %; устанавливают содержание муравьиной кислоты методом нейтрализации (ГФ). Согласно ЕФ, метанол определяют методом газовой хроматографии (9-15 % об.). Сульфатная зола - не более 0,1 % в навеске 1,0 г.

I2 + 2NaOH - Nal + NaOI + Н20

Гипойодит окисляет формальдегид до муравьиной кислоты. Непрореагировавший гипойодит при подкислении раствора избытком серной кислоты превращается в йод, который оттитровывают тиосульфатом натрия:

НСОН + NaOI + NaOH - HCOONa + Nal + H20 NaOI + Nal + H2S04 -*■ I2 + Na2S04 + H20 I2 + 2Na2S203 - Na2S406 + 2NaI

Возможно использование и других титрующих агентов при определении формальдегида: водорода пероксида в щелочном растворе, церия(ІУ) сульфата, натрия сульфита.

Препарат можно рассматривать как пролекарство, так как физиологическое действие оказывает не сам гексаметилентетрамин, а формальдегид, выделяющийся при разложении препарата в кислой среде. Именно этим объясняется включение его в настоящий раздел (см. табл. 9.1).

Получение. Уротропин (тетраазаадамантан) получают конденсацией метаналя и аммиака из водных растворов. Промежуточный продукт реакции - гексагидро-1,3,5- триазин:

ll

Гексагидро- Уротропин

1,3,5-трназин


Определение подлинности. При нагревании смеси препарата с разведенной серной кислотой образуется аммонийная соль, из которой при добавлении избытка щелочи выделяется аммиак:

(CH2)6N4 + 2H2S04 + 6Н20 - 6НСОН + 2(NH4)2S04 (NH4)2S04 + 2NaOH - 2NH3t + Na2S04 + 2H20

Гексаметилентетрамин можно обнаружить также по красному окрашиванию раствора при добавлении салициловой кислоты после предварительного нагревания с серной кислотой (см. определение подлинности формальдегида).

Испытания на чистоту. В препарате не допускается присутствие примесей органических соединений, параформа, солей аммония. ГФ указывает допустимые пределы содержания примесей хлоридов, сульфатов, тяжелых металлов.

Количественное определение. Для количественного определения гексаметилентетрамина ГФ предлагает использовать метод нейтрализации. Для этого навеску препарата нагревают с избытком 0,1М раствора серной кислоты. Избыток кислоты оттитровы- вают раствором щелочи концентрацией 0,1 моль/л (индикатор метиловый красный).

На способности гексаметилентетрамина давать с йодом тетрайодиды основан йодометрический метод количественного определения.

1. Р. Окисления.

Альдегиды легко окисляются до карбоновых кислот. Окислителями могут служить гидроксид меди (II), оксид серебра, кислород воздуха:

Ароматические альдегиды окисляются труднее алифатических. Кетоны, как было сказано выше, окисляются труднее альдегидов. Окисление кетонов проводится в жестких условиях, в присутствии сильных окислителей. Образуются в результате смеси карбоновых кислот. Как отличить альдегиды от кетонов? Различие в способности к окислению служит основой качественных реакций, позволяющих отличить альдегиды от кетонов. Многие мягкие окислители легко реагируют с альдегидами, но инертны по отношению к кетонам. а) Реактив Толленса (аммиачный раствор оксида серебра), содержащий комплексные ионы +, дает с альдегидами реакцию «серебряного зеркала». При этом образуется металлическое серебро. Раствор оксида серебра готовят непо средственно пере д опытом:

Реактив Толленса окисляет альдегиды до соответствующих карбоновых кислот, которые в присутствии аммиака образуют аммонийные соли. Сам окислитель при этой реакции восстанавливается до металлического серебра. За тонкий серебряный налет на стенках пробирки, который образуется при этой реакции, реакция альдегидов с аммиачным раствором оксида серебра получила название реакции «серебряного зеркала». СН3-СН=O)+2OH->CH3COONH4+2Ag+3NH3+H2O. Альдегиды также восстанавливают свежеприготовленный аммиачный раствор гидроксида меди (II), обладающий светло-голубой окраской (реактив Фелинга), до желтого гидроксида меди (I), который при нагревании разлагается с выделением ярко-красного осадка оксида меди (I). СН3-СН=О + 2Cu(ОН)2 - СН3СООН+2CuОН+Н2О 2CuOH->Cu2O+H2O

2. Р. Присоединения

Гидрирование - присоединение водорода.

Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt, Ni):

3. Взаимодействие с вод ой.

4. Взаимодействие, со спиртами.

При взаимодействии альдегидов со спиртами могут образовываться полуацетали и ацетали. Полуацетали представляют собой соединения, в которых при одном атоме углерода содержится гидроксильная и алкоксильная группа. К ацеталям относят вещества, в молекулах которых содержится атом углерода с двумя алкоксильными заместителями.

Ацетали, в отличие от альдегидов, более устойчивы к окислению. Благодаря обратимости взаимодействия со спиртами их часто используют в органическом синтезе для « защиты» альдегидной группы.

4.Присоединение гидросульфитов.

Гидросульфит NaHSO3 тоже присоединяется по связи C=O с образованием кристаллического производного, из которого карбонильное соединение может быть регенерировано. Бисульфитные производные используются для очистки альдегидов и кетонов.


В результате поликонденсации фенола с формальдегидом в присутствии катализаторов образуются фенолформальдегидные смолы, из которых получают пластмассы - фенопласты (бакелиты). Фенопласты - важнейшие заменители цветных и черных металлов во многих отраслях промышленности. Из них изготавливается большое количество изделий широкого потребления, электроизоляционные материалы и строительные детали. Фрагмент фенолформальдегидной смолы показан ниже:

Исходными соединениями для получения альдегидов и кетонов могут быть углеводороды, галогенопроизводные, спирты и кислоты.


Применение карбонильных соединений


Формальдегид используется для получения пластмасс, например бакелита, дубления кож, дезинфекции, протравливания семян. Совсем недавно в нашей стране разработан метод получения полиформальдегида (-СН2-О-)n, который обладает высокой химической и термической устойчивостью.

Это ценнейший конструкционный пластик, способный во многих случаях заменить металлы. Ацетальдегид используют для получения уксусной кислоты и некоторых пластмасс. Ацетон применяется как исходное вещество для синтеза многих соединений (например, метилметакрилата, полимеризацией которого получают оргстекло); он используется также в качестве растворителя.